Short-term forecasting of crime
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bunn, Derek W. & Vassilopoulos, Angelos I., 1999. "Comparison of seasonal estimation methods in multi-item short-term forecasting," International Journal of Forecasting, Elsevier, vol. 15(4), pages 431-443, October.
- Withycombe, Richard, 1989. "Forecasting with combined seasonal indices," International Journal of Forecasting, Elsevier, vol. 5(4), pages 547-552.
- George Duncan & Wilpen Gorr & Janusz Szczypula, 1993. "Bayesian Forecasting for Seemingly Unrelated Time Series: Application to Local Government Revenue Forecasting," Management Science, INFORMS, vol. 39(3), pages 275-293, March.
- Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
- A. Hirschfield & K.J. Bowers, 1997. "The Effect of Social Cohesion on Levels of Recorded Crime in Disadvantaged Areas," Urban Studies, Urban Studies Journal Limited, vol. 34(8), pages 1275-1295, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Daniel Ekwall & Björn Lantz, 2022. "Seasonality of incident types in transport crime – Analysis of TAPA statistics," Journal of Transportation Security, Springer, vol. 15(3), pages 193-222, December.
- Tao Hu & Xinyan Zhu & Lian Duan & Wei Guo, 2018. "Urban crime prediction based on spatio-temporal Bayesian model," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-18, October.
- Svetunkov, Ivan & Chen, Huijing & Boylan, John E., 2023. "A new taxonomy for vector exponential smoothing and its application to seasonal time series," European Journal of Operational Research, Elsevier, vol. 304(3), pages 964-980.
- Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015.
"Golden rule of forecasting: Be conservative,"
Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
- Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2014. "Golden Rule of Forecasting: Be conservative," MPRA Paper 53579, University Library of Munich, Germany.
- Gorr, Wilpen & Harries, Richard, 2003. "Introduction to crime forecasting," International Journal of Forecasting, Elsevier, vol. 19(4), pages 551-555.
- Hyeon-Woo Kang & Hang-Bong Kang, 2017. "Prediction of crime occurrence from multi-modal data using deep learning," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-19, April.
- Panagiotis Stalidis & Theodoros Semertzidis & Petros Daras, 2021. "Examining Deep Learning Architectures for Crime Classification and Prediction," Forecasting, MDPI, vol. 3(4), pages 1-22, October.
- Corcoran, Jonathan J. & Wilson, Ian D. & Ware, J. Andrew, 2003. "Predicting the geo-temporal variations of crime and disorder," International Journal of Forecasting, Elsevier, vol. 19(4), pages 623-634.
- Obubu Maxwell* & Ikediuwa Udoka Chinedu & Anabike Charles Ifeanyi & Nwokike Chukwudike C., 2019. "On Modeling Murder Crimes in Nigeria," Scientific Review, Academic Research Publishing Group, vol. 5(8), pages 157-162, 08-2019.
- Jean-François Richard, 2015. "Likelihood Based Inference and Prediction in Spatio-temporal Panel Count Models for Urban Crimes," Working Paper 5657, Department of Economics, University of Pittsburgh.
- Shoesmith, Gary L., 2013. "Space–time autoregressive models and forecasting national, regional and state crime rates," International Journal of Forecasting, Elsevier, vol. 29(1), pages 191-201.
- Armstrong, J. Scott, 2006. "Findings from evidence-based forecasting: Methods for reducing forecast error," International Journal of Forecasting, Elsevier, vol. 22(3), pages 583-598.
- Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
- Camacho-Collados, M. & Liberatore, F. & Angulo, J.M., 2015. "A multi-criteria Police Districting Problem for the efficient and effective design of patrol sector," European Journal of Operational Research, Elsevier, vol. 246(2), pages 674-684.
- Stephanie Glaser & Robert C. Jung & Karsten Schweikert, 2022. "Spatial panel count data: modeling and forecasting of urban crimes," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-29, December.
- Cohen, Jacqueline & Garman, Samuel & Gorr, Wilpen, 2009. "Empirical calibration of time series monitoring methods using receiver operating characteristic curves," International Journal of Forecasting, Elsevier, vol. 25(3), pages 484-497, July.
- Roman Liesenfeld & Jean‐François Richard & Jan Vogler, 2017.
"Likelihood‐Based Inference and Prediction in Spatio‐Temporal Panel Count Models for Urban Crimes,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 600-620, April.
- Vogler, Jan & Liesenfeld, Roman & Richard, Jean-Francois, 2015. "Likelihood based inference and prediction in spatio-temporal panel count models for urban crimes," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113131, Verein für Socialpolitik / German Economic Association.
- Huddleston, Samuel H. & Porter, John H. & Brown, Donald E., 2015. "Improving forecasts for noisy geographic time series," Journal of Business Research, Elsevier, vol. 68(8), pages 1810-1818.
- Marc Garnica-Caparrós & Daniel Memmert & Fabian Wunderlich, 2022. "Artificial data in sports forecasting: a simulation framework for analysing predictive models in sports," Information Systems and e-Business Management, Springer, vol. 20(3), pages 551-580, September.
- Temidayo James Aransiola & Marcelo Justus & Vania Ceccato, 2023. "Space-time dynamics of cargo theft: evidence from São Paulo, Brazil," Journal of Transportation Security, Springer, vol. 16(1), pages 1-28, December.
- Chen, Huijing & Boylan, John E., 2008. "Empirical evidence on individual, group and shrinkage seasonal indices," International Journal of Forecasting, Elsevier, vol. 24(3), pages 525-534.
- Usman Ghani & Peter Toth & Fekete David, 2023. "Predictive Choropleth Maps Using ARIMA Time Series Forecasting for Crime Rates in Visegrád Group Countries," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
- Mohler, George & Carter, Jeremy & Raje, Rajeev, 2018. "Improving social harm indices with a modulated Hawkes process," International Journal of Forecasting, Elsevier, vol. 34(3), pages 431-439.
- Daniel Ekwall & Björn Lantz, 2018. "The use of violence in cargo theft – a supply chain disruption case," Journal of Transportation Security, Springer, vol. 11(1), pages 3-21, June.
- Gorr, Wilpen L., 2009. "Forecast accuracy measures for exception reporting using receiver operating characteristic curves," International Journal of Forecasting, Elsevier, vol. 25(1), pages 48-61.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015.
"Golden rule of forecasting: Be conservative,"
Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
- Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2014. "Golden Rule of Forecasting: Be conservative," MPRA Paper 53579, University Library of Munich, Germany.
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- Jan G. De Gooijer & Rob J. Hyndman, 2005.
"25 Years of IIF Time Series Forecasting: A Selective Review,"
Monash Econometrics and Business Statistics Working Papers
12/05, Monash University, Department of Econometrics and Business Statistics.
- Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
- Chen, Huijing & Boylan, John E., 2008. "Empirical evidence on individual, group and shrinkage seasonal indices," International Journal of Forecasting, Elsevier, vol. 24(3), pages 525-534.
- H Chen & J E Boylan, 2007. "Use of individual and group seasonal indices in subaggregate demand forecasting," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(12), pages 1660-1671, December.
- R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
- Hill, Arthur V. & Zhang, Weiyong & Burch, Gerald F., 2015. "Forecasting the forecastability quotient for inventory management," International Journal of Forecasting, Elsevier, vol. 31(3), pages 651-663.
- Miller, Don M. & Williams, Dan, 2004. "Damping seasonal factors: Shrinkage estimators for the X-12-ARIMA program," International Journal of Forecasting, Elsevier, vol. 20(4), pages 529-549.
- Svetunkov, Ivan & Chen, Huijing & Boylan, John E., 2023. "A new taxonomy for vector exponential smoothing and its application to seasonal time series," European Journal of Operational Research, Elsevier, vol. 304(3), pages 964-980.
- Zotteri, Giulio & Kalchschmidt, Matteo, 2007. "A model for selecting the appropriate level of aggregation in forecasting processes," International Journal of Production Economics, Elsevier, vol. 108(1-2), pages 74-83, July.
- Dekker, Mark & van Donselaar, Karel & Ouwehand, Pim, 2004. "How to use aggregation and combined forecasting to improve seasonal demand forecasts," International Journal of Production Economics, Elsevier, vol. 90(2), pages 151-167, July.
- Pim Ouwehand & Rob J. Hyndman & Ton G. de Kok & Karel H. van Donselaar, 2007. "A state space model for exponential smoothing with group seasonality," Monash Econometrics and Business Statistics Working Papers 7/07, Monash University, Department of Econometrics and Business Statistics.
- Gorr, Wilpen L., 2009. "Forecast accuracy measures for exception reporting using receiver operating characteristic curves," International Journal of Forecasting, Elsevier, vol. 25(1), pages 48-61.
- Lindh, Thomas & Malmberg, Bo, 2007.
"Demographically based global income forecasts up to the year 2050,"
International Journal of Forecasting, Elsevier, vol. 23(4), pages 553-567.
- Malmberg, Bo & Lindh, Thomas, 2004. "Demographically based global income forecasts up to the year 2050," Arbetsrapport 2004:7, Institute for Futures Studies.
- Madden, Gary & Tan, Joachim, 2007.
"Forecasting telecommunications data with linear models,"
Telecommunications Policy, Elsevier, vol. 31(1), pages 31-44, February.
- Madden, Gary G & Tan, Joachim, 2007. "Forecasting telecommunications data with linear models," MPRA Paper 14739, University Library of Munich, Germany.
- Kumar, V. & Sunder, Sarang & Sharma, Amalesh, 2015. "Leveraging Distribution to Maximize Firm Performance in Emerging Markets," Journal of Retailing, Elsevier, vol. 91(4), pages 627-643.
- Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
- Garcia-Ferrer, Antonio & Bujosa-Brun, Marcos, 2000. "Forecasting OECD industrial turning points using unobserved components models with business survey data," International Journal of Forecasting, Elsevier, vol. 16(2), pages 207-227.
- Ariana Chang & Tian‐Shyug Lee & Hsiu‐Mei Lee, 2024. "Applying sustainable development goals in financial forecasting using machine learning techniques," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 31(3), pages 2277-2289, May.
- Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Effects on the Riskless Yield Curve with Regime Switching Nelson†Siegel Models," Working Papers 639, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:19:y:2003:i:4:p:579-594. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.