Predicting the geo-temporal variations of crime and disorder
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- J. H. Ratcliffe & M. J. McCullagh, 1999. "Hotbeds of crime and the search for spatial accuracy," Journal of Geographical Systems, Springer, vol. 1(4), pages 385-398, December.
- Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
- Tkacz, Greg, 2001. "Neural network forecasting of Canadian GDP growth," International Journal of Forecasting, Elsevier, vol. 17(1), pages 57-69.
- Gorr, Wilpen & Olligschlaeger, Andreas & Thompson, Yvonne, 2003. "Short-term forecasting of crime," International Journal of Forecasting, Elsevier, vol. 19(4), pages 579-594.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gorr, Wilpen & Harries, Richard, 2003. "Introduction to crime forecasting," International Journal of Forecasting, Elsevier, vol. 19(4), pages 551-555.
- Neill, Daniel B., 2009. "Expectation-based scan statistics for monitoring spatial time series data," International Journal of Forecasting, Elsevier, vol. 25(3), pages 498-517, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Goutam Dutta & Pankaj Jha & Arnab Kumar Laha & Neeraj Mohan, 2006. "Artificial Neural Network Models for Forecasting Stock Price Index in the Bombay Stock Exchange," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 5(3), pages 283-295, December.
- Terasvirta, Timo & van Dijk, Dick & Medeiros, Marcelo C., 2005.
"Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination,"
International Journal of Forecasting, Elsevier, vol. 21(4), pages 755-774.
- Teräsvirta, Timo & van Dijk, Dick & Medeiros, Marcelo, 2004. "Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination," SSE/EFI Working Paper Series in Economics and Finance 561, Stockholm School of Economics, revised 09 Nov 2004.
- Timo Teräsvirta & Dick van Dijk & Marcelo Cunha Medeiros, 2004. "Linear models, smooth transition autoregressions and neural networks for forecasting macroeconomic time series: A reexamination," Textos para discussão 485, Department of Economics PUC-Rio (Brazil).
- Heravi, Saeed & Osborn, Denise R. & Birchenhall, C. R., 2004. "Linear versus neural network forecasts for European industrial production series," International Journal of Forecasting, Elsevier, vol. 20(3), pages 435-446.
- Qing Cao & Mark Parry & Karyl Leggio, 2011. "The three-factor model and artificial neural networks: predicting stock price movement in China," Annals of Operations Research, Springer, vol. 185(1), pages 25-44, May.
- Qi, Min & Yang, Sha, 2003. "Forecasting consumer credit card adoption: what can we learn about the utility function?," International Journal of Forecasting, Elsevier, vol. 19(1), pages 71-85.
- Jan G. De Gooijer & Rob J. Hyndman, 2005.
"25 Years of IIF Time Series Forecasting: A Selective Review,"
Monash Econometrics and Business Statistics Working Papers
12/05, Monash University, Department of Econometrics and Business Statistics.
- Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
- Saman, Corina, 2011. "Scenarios of the Romanian GDP Evolution With Neural Models," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 129-140, December.
- Seulki Chung, 2023. "Inside the black box: Neural network-based real-time prediction of US recessions," Papers 2310.17571, arXiv.org, revised May 2024.
- Jane Binner & Rakesh Bissoondeeal & Thomas Elger & Alicia Gazely & Andrew Mullineux, 2005. "A comparison of linear forecasting models and neural networks: an application to Euro inflation and Euro Divisia," Applied Economics, Taylor & Francis Journals, vol. 37(6), pages 665-680.
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- Malik, Farooq & Nasereddin, Mahdi, 2006. "Forecasting output using oil prices: A cascaded artificial neural network approach," Journal of Economics and Business, Elsevier, vol. 58(2), pages 168-180.
- Firdous Ahmad Shah & Lokenath Debnath, 2017. "Wavelet Neural Network Model for Yield Spread Forecasting," Mathematics, MDPI, vol. 5(4), pages 1-15, November.
- Constantina Kopitsa & Ioannis G. Tsoulos & Vasileios Charilogis & Athanassios Stavrakoudis, 2024. "Predicting the Duration of Forest Fires Using Machine Learning Methods," Future Internet, MDPI, vol. 16(11), pages 1-19, October.
- Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
- Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015.
"Golden rule of forecasting: Be conservative,"
Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
- Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2014. "Golden Rule of Forecasting: Be conservative," MPRA Paper 53579, University Library of Munich, Germany.
- Olson, Dennis & Mossman, Charles, 2003. "Neural network forecasts of Canadian stock returns using accounting ratios," International Journal of Forecasting, Elsevier, vol. 19(3), pages 453-465.
- Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
- Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
- Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
- Nataša Glišović & Miloš Milenković & Nebojša Bojović & Libor Švadlenka & Zoran Avramović, 2016. "A hybrid model for forecasting the volume of passenger flows on Serbian railways," Operational Research, Springer, vol. 16(2), pages 271-285, July.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:19:y:2003:i:4:p:623-634. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.