IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v25y2009i3p484-497.html
   My bibliography  Save this article

Empirical calibration of time series monitoring methods using receiver operating characteristic curves

Author

Listed:
  • Cohen, Jacqueline
  • Garman, Samuel
  • Gorr, Wilpen

Abstract

Time series monitoring methods, such as the Brown and Trigg methods, have the purpose of detecting pattern breaks (or "signals") in time series data reliably and in a timely fashion. Traditionally, researchers have used the average run length (ARL) statistic on results from generated signal occurrences in simulated time series data to calibrate and evaluate these methods, with a focus on timeliness of signal detection. This paper investigates the receiver operating characteristic (ROC) framework, well-known in the diagnostic decision making literature, as an alternative to ARL analysis for time series monitoring methods. ROC analysis traditionally uses real data to address the inherent tradeoff in signal detection between the true and false positive rates when varying control limits. We illustrate ROC analysis using time series data on crime at the patrol district level in two cities, and use the concept of Pareto frontier ROC curves and reverse functions for methods such as Brown's and Trigg's that have parameters affecting signal-detection performance. We compare the Brown and Trigg methods to three benchmark methods, including one commonly used in practice. The Brown and Trigg methods collapse to the same simple method on the Pareto frontier and dominate the benchmark methods under most conditions. The worst method is the one commonly used in practice.

Suggested Citation

  • Cohen, Jacqueline & Garman, Samuel & Gorr, Wilpen, 2009. "Empirical calibration of time series monitoring methods using receiver operating characteristic curves," International Journal of Forecasting, Elsevier, vol. 25(3), pages 484-497, July.
  • Handle: RePEc:eee:intfor:v:25:y:2009:i:3:p:484-497
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(08)00141-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. J. Harrison & O. L. Davies, 1964. "The Use of Cumulative Sum (Cusum) Techniques for the Control of Routine Forecasts of Product Demand," Operations Research, INFORMS, vol. 12(2), pages 325-333, April.
    2. Barbara J. McNeil & James A. Hanley, 1984. "Statistical Approaches to the Analysis of Receiver Operating Characteristic (ROC) Curves," Medical Decision Making, , vol. 4(2), pages 137-150, June.
    3. Douglas Mossman, 1995. "Resampling Techniques in the Analysis of Non-binormal ROC Data," Medical Decision Making, , vol. 15(4), pages 358-366, October.
    4. Gorr, Wilpen & Olligschlaeger, Andreas & Thompson, Yvonne, 2003. "Short-term forecasting of crime," International Journal of Forecasting, Elsevier, vol. 19(4), pages 579-594.
    5. Peter Deneef & Daniel L. Kent, 1993. "Using Treatment-tradeoff Preferences to Select Diagnostic Strategies," Medical Decision Making, , vol. 13(2), pages 126-132, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Drehmann, Mathias & Juselius, Mikael, 2014. "Evaluating early warning indicators of banking crises: Satisfying policy requirements," International Journal of Forecasting, Elsevier, vol. 30(3), pages 759-780.
    2. Catullo, Ermanno & Gallegati, Mauro & Palestrini, Antonio, 2015. "Towards a credit network based early warning indicator for crises," Journal of Economic Dynamics and Control, Elsevier, vol. 50(C), pages 78-97.
    3. Kajal Lahiri & Liu Yang, 2018. "Confidence Bands for ROC Curves With Serially Dependent Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 115-130, January.
    4. Mathias Drehmann & Kostas Tsatsaronis, 2014. "The credit-to-GDP gap and countercyclical capital buffers: questions and answers," BIS Quarterly Review, Bank for International Settlements, March.
    5. Máximo Camacho & Gonzalo Palmieri, 2021. "Evaluating the OECD’s main economic indicators at anticipating recessions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 80-93, January.
    6. Yusuf Yıldırım & Anirban Sanyal, 2022. "Evaluating the Effectiveness of Early Warning Indicators: An Application of Receiver Operating Characteristic Curve Approach to Panel Data," Scientific Annals of Economics and Business (continues Analele Stiintifice), Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, vol. 69(4), pages 557-597, December.
    7. Gorr, Wilpen L. & Schneider, Matthew J., 2013. "Large-change forecast accuracy: Reanalysis of M3-Competition data using receiver operating characteristic analysis," International Journal of Forecasting, Elsevier, vol. 29(2), pages 274-281.
    8. Schneider, Matthew J. & Gorr, Wilpen L., 2015. "ROC-based model estimation for forecasting large changes in demand," International Journal of Forecasting, Elsevier, vol. 31(2), pages 253-262.
    9. Ord, J. Keith & Koehler, Anne B. & Snyder, Ralph D. & Hyndman, Rob J., 2009. "Monitoring processes with changing variances," International Journal of Forecasting, Elsevier, vol. 25(3), pages 518-525, July.
    10. Samohyl, Robert, 2012. "Audits and logistic regression, deciding what really matters in service processes: a case study of a government funding agency for research grants," MPRA Paper 41557, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gorr, Wilpen L., 2009. "Forecast accuracy measures for exception reporting using receiver operating characteristic curves," International Journal of Forecasting, Elsevier, vol. 25(1), pages 48-61.
    2. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    3. Xiangjin Shen & Shiliang Li & Hiroki Tsurumi, 2013. "Comparison of Parametric and Semi-Parametric Binary Response Models," Departmental Working Papers 201308, Rutgers University, Department of Economics.
    4. Usman Ghani & Peter Toth & Fekete David, 2023. "Predictive Choropleth Maps Using ARIMA Time Series Forecasting for Crime Rates in Visegrád Group Countries," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    5. A A Syntetos & J E Boylan & S M Disney, 2009. "Forecasting for inventory planning: a 50-year review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 149-160, May.
    6. Tao Hu & Xinyan Zhu & Lian Duan & Wei Guo, 2018. "Urban crime prediction based on spatio-temporal Bayesian model," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-18, October.
    7. Lee, B.M.S. & Bui-Lan, Anh, 1982. "Use Of Errors Of Prediction In Improving Forecast Accuracy: An Application To Wool In Australia," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 26(1), pages 1-14, April.
    8. James A. Hanley, 1988. "The Robustness of the "Binormal" Assumptions Used in Fitting ROC Curves," Medical Decision Making, , vol. 8(3), pages 197-203, August.
    9. Leelambar Singh & Subbarayan Saravanan & J. Jacinth Jennifer & D. Abijith, 2021. "Application of multi-influence factor (MIF) technique for the identification of suitable sites for urban settlement in Tiruchirappalli City, Tamil Nadu, India," Asia-Pacific Journal of Regional Science, Springer, vol. 5(3), pages 797-823, October.
    10. Xiangjin Shen & Iskander Karibzhanov & Hiroki Tsurumi & Shiliang Li, 2022. "Comparison of Bayesian and Sample Theory Parametric and Semiparametric Binary Response Models," Staff Working Papers 22-31, Bank of Canada.
    11. K. Drakopoulos & R. S. Randhawa, 2021. "Why Perfect Tests May Not Be Worth Waiting For: Information as a Commodity," Management Science, INFORMS, vol. 67(11), pages 6678-6693, November.
    12. Roman Liesenfeld & Jean‐François Richard & Jan Vogler, 2017. "Likelihood‐Based Inference and Prediction in Spatio‐Temporal Panel Count Models for Urban Crimes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 600-620, April.
    13. Armstrong, J. Scott, 2006. "Findings from evidence-based forecasting: Methods for reducing forecast error," International Journal of Forecasting, Elsevier, vol. 22(3), pages 583-598.
    14. Roy M. Poses & Randall D. Cebul & Robert M. Centor, 1988. "Eualuating Physicians' Probabilistic Judgments," Medical Decision Making, , vol. 8(4), pages 233-240, December.
    15. George Laking & Joanne Lord & Alastair Fischer, 2006. "The economics of diagnosis," Health Economics, John Wiley & Sons, Ltd., vol. 15(10), pages 1109-1120, October.
    16. Corcoran, Jonathan J. & Wilson, Ian D. & Ware, J. Andrew, 2003. "Predicting the geo-temporal variations of crime and disorder," International Journal of Forecasting, Elsevier, vol. 19(4), pages 623-634.
    17. Chen, Huijing & Boylan, John E., 2008. "Empirical evidence on individual, group and shrinkage seasonal indices," International Journal of Forecasting, Elsevier, vol. 24(3), pages 525-534.
    18. Mohler, George & Carter, Jeremy & Raje, Rajeev, 2018. "Improving social harm indices with a modulated Hawkes process," International Journal of Forecasting, Elsevier, vol. 34(3), pages 431-439.
    19. Daniel Ekwall & Björn Lantz, 2018. "The use of violence in cargo theft – a supply chain disruption case," Journal of Transportation Security, Springer, vol. 11(1), pages 3-21, June.
    20. Rennie, Nicola & Cleophas, Catherine & Sykulski, Adam M. & Dost, Florian, 2021. "Identifying and responding to outlier demand in revenue management," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1015-1030.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:25:y:2009:i:3:p:484-497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.