IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/14739.html
   My bibliography  Save this paper

Forecasting telecommunications data with linear models

Author

Listed:
  • Madden, Gary G
  • Tan, Joachim

Abstract

For telecommunication companies to successfully manage their business, companies rely on mapping future trends and usage patterns. However, the evolution of telecommunications technology and systems in the provision of services renders imperfections in telecommunications data and impinges on a company’s’ ability to properly evaluate and plan their business. ITU Recommendation E.507 provides a selection of econometric models for forecasting these trends. However, no specific guidance is given. This paper evaluates whether simple extrapolation techniques in Recommendation E.507 can generate accurate forecasts. Standard forecast error statistics—mean absolute percentage error, median absolute percentage error and percentage better—show the ARIMA, Holt and Holt-D models provide better forecasts than a random walk and other linear extrapolation methods.

Suggested Citation

  • Madden, Gary G & Tan, Joachim, 2007. "Forecasting telecommunications data with linear models," MPRA Paper 14739, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:14739
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/14739/1/MPRA_paper_14739.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    2. Grubesic, Tony H. & Murray, Alan T., 2005. "Geographies of imperfection in telecommunication analysis," Telecommunications Policy, Elsevier, vol. 29(1), pages 69-94, February.
    3. Everette S. Gardner, Jr. & Ed. Mckenzie, 1985. "Forecasting Trends in Time Series," Management Science, INFORMS, vol. 31(10), pages 1237-1246, October.
    4. Fildes, Robert & Hibon, Michele & Makridakis, Spyros & Meade, Nigel, 1998. "Generalising about univariate forecasting methods: further empirical evidence," International Journal of Forecasting, Elsevier, vol. 14(3), pages 339-358, September.
    5. Makridakis, Spyros & Chatfield, Chris & Hibon, Michele & Lawrence, Michael & Mills, Terence & Ord, Keith & Simmons, LeRoy F., 1993. "The M2-competition: A real-time judgmentally based forecasting study," International Journal of Forecasting, Elsevier, vol. 9(1), pages 5-22, April.
    6. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
    7. Grambsch, Patricia & Stahel, Werner A., 1990. "Forecasting demand for special telephone services: A case study," International Journal of Forecasting, Elsevier, vol. 6(1), pages 53-64.
    8. Fildes, Robert, 1992. "The evaluation of extrapolative forecasting methods," International Journal of Forecasting, Elsevier, vol. 8(1), pages 81-98, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perambur Neelakanta & Raef Yassin, 2012. "Information theoretics-based technoeconomic forecasting: application to telecommunication service industry," Netnomics, Springer, vol. 13(1), pages 45-78, April.
    2. Paris A. Mastorocostas & Constantinos S. Hilas & Dimitris N. Varsamis & Stergiani C. Dova, 2016. "Telecommunications call volume forecasting with a block-diagonal recurrent fuzzy neural network," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 63(1), pages 15-25, September.
    3. Shagun Srivastava & Madhvendra Misra, 2014. "Developing Evaluation Matrix for Critical Success Factors in Technology Forecasting," Global Business Review, International Management Institute, vol. 15(2), pages 363-380, June.
    4. Mack, Elizabeth A. & Grubesic, Tony H., 2009. "Forecasting broadband provision," Information Economics and Policy, Elsevier, vol. 21(4), pages 297-311, November.
    5. Meade, Nigel & Islam, Towhidul, 2015. "Forecasting in telecommunications and ICT—A review," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1105-1126.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gary Madden & Joachim Tan, 2008. "Forecasting international bandwidth capacity using linear and ANN methods," Applied Economics, Taylor & Francis Journals, vol. 40(14), pages 1775-1787.
    2. Robert Fildes & Gary Madden & Joachim Tan, 2007. "Optimal forecasting model selection and data characteristics," Applied Financial Economics, Taylor & Francis Journals, vol. 17(15), pages 1251-1264.
    3. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    4. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    5. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    6. Madden, Gary G & Coble-Neal, Grant, 2005. "Forecasting international bandwidth capability," MPRA Paper 10822, University Library of Munich, Germany.
    7. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    8. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    9. Gardner Jr., Everette S. & Diaz-Saiz, Joaquin, 2008. "Exponential smoothing in the telecommunications data," International Journal of Forecasting, Elsevier, vol. 24(1), pages 170-174.
    10. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    11. Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011. "Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660.
    12. Mirakyan, Atom & Meyer-Renschhausen, Martin & Koch, Andreas, 2017. "Composite forecasting approach, application for next-day electricity price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 228-237.
    13. Fildes, Robert & Hibon, Michele & Makridakis, Spyros & Meade, Nigel, 1998. "Generalising about univariate forecasting methods: further empirical evidence," International Journal of Forecasting, Elsevier, vol. 14(3), pages 339-358, September.
    14. Madden, Gary G & Coble-Neal, Grant, 2004. "Internet traffic dynamics," MPRA Paper 10827, University Library of Munich, Germany.
    15. Businger, Mark P. & Read, Robert R., 1999. "Identification of demand patterns for selective processing: a case study," Omega, Elsevier, vol. 27(2), pages 189-200, April.
    16. Armstrong, J. Scott, 2006. "Findings from evidence-based forecasting: Methods for reducing forecast error," International Journal of Forecasting, Elsevier, vol. 22(3), pages 583-598.
    17. Lars Lien Ankile & Kjartan Krange, 2022. "Deep Learning and Linear Programming for Automated Ensemble Forecasting and Interpretation," Papers 2201.00426, arXiv.org, revised Nov 2022.
    18. Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
    19. Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
    20. Tashman, Leonard J. & Kruk, Joshua M., 1996. "The use of protocols to select exponential smoothing procedures: A reconsideration of forecasting competitions," International Journal of Forecasting, Elsevier, vol. 12(2), pages 235-253, June.

    More about this item

    Keywords

    linear models; ITU Recommendations; telecommunications forecasting;
    All these keywords.

    JEL classification:

    • L96 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Telecommunications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:14739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.