Selection of shape parameter in radial basis functions for solution of time-fractional Black–Scholes models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2018.04.045
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- repec:bla:jfinan:v:58:y:2003:i:2:p:753-778 is not listed on IDEAS
- Peter Carr & Liuren Wu, 2003.
"The Finite Moment Log Stable Process and Option Pricing,"
Journal of Finance, American Finance Association, vol. 58(2), pages 753-777, April.
- Peter Carr & Liuren Wu, 2002. "The Finite Moment Log Stable Process and Option Pricing," Finance 0207012, University Library of Munich, Germany.
- Robert C. Merton, 2005.
"Theory of rational option pricing,"
World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288,
World Scientific Publishing Co. Pte. Ltd..
- Robert C. Merton, 1973. "Theory of Rational Option Pricing," Bell Journal of Economics, The RAND Corporation, vol. 4(1), pages 141-183, Spring.
- Cartea, Álvaro & del-Castillo-Negrete, Diego, 2007.
"Fractional diffusion models of option prices in markets with jumps,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 749-763.
- Alvaro Cartea & Diego del-Castillo-Negrete, 2006. "Fractional Diffusion Models of Option Prices in Markets with Jumps," Birkbeck Working Papers in Economics and Finance 0604, Birkbeck, Department of Economics, Mathematics & Statistics.
- Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
- A. Golbabai & E. Mohebianfar, 2017. "A New Stable Local Radial Basis Function Approach for Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 49(2), pages 271-288, February.
- Jumarie, Guy, 2008. "Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Application to fractional Black-Scholes equations," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 271-287, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- S. Banihashemi & A. Ghasemifard & A. Babaei, 2024. "On the Numerical Option Pricing Methods: Fractional Black-Scholes Equations with CEV Assets," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1463-1488, September.
- Changhong Guo & Shaomei Fang & Yong He, 2023. "Derivation and Application of Some Fractional Black–Scholes Equations Driven by Fractional G-Brownian Motion," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1681-1705, April.
- Hussain, Manzoor & Haq, Sirajul & Ghafoor, Abdul, 2019. "Meshless spectral method for solution of time-fractional coupled KdV equations," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 321-334.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lv, Longjin & Xiao, Jianbin & Fan, Liangzhong & Ren, Fuyao, 2016. "Correlated continuous time random walk and option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 100-107.
- Anshima Singh & Sunil Kumar, 2024. "An Efficient Numerical Method Based on Exponential B-splines for a Time-Fractional Black–Scholes Equation Governing European Options," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 1965-2002, October.
- Ahmad Golbabai & Omid Nikan, 2020. "A Computational Method Based on the Moving Least-Squares Approach for Pricing Double Barrier Options in a Time-Fractional Black–Scholes Model," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 119-141, January.
- Y. Esmaeelzade Aghdam & H. Mesgarani & A. Adl & B. Farnam, 2023. "The Convergence Investigation of a Numerical Scheme for the Tempered Fractional Black-Scholes Model Arising European Double Barrier Option," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 513-528, February.
- Lina Song, 2018. "A Semianalytical Solution of the Fractional Derivative Model and Its Application in Financial Market," Complexity, Hindawi, vol. 2018, pages 1-10, April.
- Jean-Philippe Aguilar & Jan Korbel & Nicolas Pesci, 2021. "On the Quantitative Properties of Some Market Models Involving Fractional Derivatives," Mathematics, MDPI, vol. 9(24), pages 1-24, December.
- Wenting Chen & Kai Du & Xinzi Qiu, 2017. "Analytic properties of American option prices under a modified Black-Scholes equation with spatial fractional derivatives," Papers 1701.01515, arXiv.org.
- Xin Cai & Yihong Wang, 2024. "A Novel Fourth-Order Finite Difference Scheme for European Option Pricing in the Time-Fractional Black–Scholes Model," Mathematics, MDPI, vol. 12(21), pages 1-23, October.
- Gonçalo Faria & João Correia-da-Silva, 2014.
"A closed-form solution for options with ambiguity about stochastic volatility,"
Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
- Gonçalo Faria & João Correia-da-Silva, 2011. "A Closed-Form Solution for Options with Ambiguity about Stochastic Volatility," FEP Working Papers 414, Universidade do Porto, Faculdade de Economia do Porto.
- Minqiang Li & Kyuseok Lee, 2011.
"An adaptive successive over-relaxation method for computing the Black-Scholes implied volatility,"
Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1245-1269.
- Li, Minqiang, 2008. "An Adaptive Succesive Over-relaxation Method for Computing the Black-Scholes Implied Volatility," MPRA Paper 6867, University Library of Munich, Germany.
- Xu Guo & Yutian Li, 2016. "Valuation of American options under the CGMY model," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1529-1539, October.
- Longjin, Lv & Ren, Fu-Yao & Qiu, Wei-Yuan, 2010. "The application of fractional derivatives in stochastic models driven by fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4809-4818.
- Zhang, H. & Liu, F. & Chen, S. & Anh, V. & Chen, J., 2018. "Fast numerical simulation of a new time-space fractional option pricing model governing European call option," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 186-198.
- Leif Andersen & Alexander Lipton, 2012. "Asymptotics for Exponential Levy Processes and their Volatility Smile: Survey and New Results," Papers 1206.6787, arXiv.org.
- Grzegorz Krzy.zanowski & Marcin Magdziarz & {L}ukasz P{l}ociniczak, 2019. "A weighted finite difference method for subdiffusive Black Scholes Model," Papers 1907.00297, arXiv.org, revised Apr 2020.
- Pedro Febrer & João Guerra, 2021. "Residue Sum Formula for Pricing Options under the Variance Gamma Model," Mathematics, MDPI, vol. 9(10), pages 1-29, May.
- Claudia Yeap & Simon S Kwok & S T Boris Choy, 2018.
"A Flexible Generalized Hyperbolic Option Pricing Model and Its Special Cases,"
Journal of Financial Econometrics, Oxford University Press, vol. 16(3), pages 425-460.
- Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
- Peter Carr & Liuren Wu, 2020. "Option Profit and Loss Attribution and Pricing: A New Framework," Journal of Finance, American Finance Association, vol. 75(4), pages 2271-2316, August.
- Wang, Jun & Liang, Jin-Rong & Lv, Long-Jin & Qiu, Wei-Yuan & Ren, Fu-Yao, 2012. "Continuous time Black–Scholes equation with transaction costs in subdiffusive fractional Brownian motion regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 750-759.
- Ricardo Crisóstomo, 2017. "Speed and biases of Fourier-based pricing choices: Analysis of the Bates and Asymmetric Variance Gamma models," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
More about this item
Keywords
Residual Power Series method; Meshfree method; Radial basis function; Black–Scholes equation; Caputo fractional derivative;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:335:y:2018:i:c:p:248-263. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.