IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i21p4809-4818.html
   My bibliography  Save this article

The application of fractional derivatives in stochastic models driven by fractional Brownian motion

Author

Listed:
  • Longjin, Lv
  • Ren, Fu-Yao
  • Qiu, Wei-Yuan

Abstract

In this paper, in order to establish connection between fractional derivative and fractional Brownian motion (FBM), we first prove the validity of the fractional Taylor formula proposed by Guy Jumarie. Then, by using the properties of this Taylor formula, we derive a fractional Itô formula for H∈[1/2,1), which coincides in form with the one proposed by Duncan for some special cases, whose formula is based on the Wick Product. Lastly, we apply this fractional Itô formula to the option pricing problem when the underlying of the option contract is supposed to be driven by a geometric fractional Brownian motion. The case that the drift, volatility and risk-free interest rate are all dependent on t is also discussed.

Suggested Citation

  • Longjin, Lv & Ren, Fu-Yao & Qiu, Wei-Yuan, 2010. "The application of fractional derivatives in stochastic models driven by fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4809-4818.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:21:p:4809-4818
    DOI: 10.1016/j.physa.2010.06.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437110005443
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2010.06.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bender, Christian, 2003. "An Itô formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter," Stochastic Processes and their Applications, Elsevier, vol. 104(1), pages 81-106, March.
    2. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    4. Jumarie, Guy, 2008. "Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Application to fractional Black-Scholes equations," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 271-287, February.
    5. Jonathan Lewellen, 2002. "Momentum and Autocorrelation in Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 15(2), pages 533-564, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fendzi-Donfack, Emmanuel & Kenfack-Jiotsa, Aurélien, 2023. "Extended Fan’s sub-ODE technique and its application to a fractional nonlinear coupled network including multicomponents — LC blocks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Song, Wanqing & Li, Ming & Li, Yuanyuan & Cattani, Carlo & Chi, Chi-Hung, 2019. "Fractional Brownian motion: Difference iterative forecasting models," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 347-355.
    3. Xiao, Weilin & Zhang, Weiguo & Xu, Weijun & Zhang, Xili, 2012. "The valuation of equity warrants in a fractional Brownian environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1742-1752.
    4. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
    5. Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xili & Zhang, Xiaoli, 2012. "Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6418-6431.
    6. Yue Qi & Yue Wang, 2023. "Innovating and Pricing Carbon-Offset Options of Asian Styles on the Basis of Jump Diffusions and Fractal Brownian Motions," Mathematics, MDPI, vol. 11(16), pages 1-22, August.
    7. Liu, He & Song, Wanqing & Li, Ming & Kudreyko, Aleksey & Zio, Enrico, 2020. "Fractional Lévy stable motion: Finite difference iterative forecasting model," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    8. Song, Wanqing & Cattani, Carlo & Chi, Chi-Hung, 2020. "Multifractional Brownian motion and quantum-behaved particle swarm optimization for short term power load forecasting: An integrated approach," Energy, Elsevier, vol. 194(C).
    9. Zhao, Ailiang & Li, Junmin & Lei, Yanfang & He, Chao, 2021. "Robust point control for a class of fractional-order reaction–diffusion systems via non-collocated point measurement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    10. Jean-Philippe Aguilar & Jan Korbel & Yuri Luchko, 2019. "Applications of the Fractional Diffusion Equation to Option Pricing and Risk Calculations," Mathematics, MDPI, vol. 7(9), pages 1-23, September.
    11. Farshid Mehrdoust & Ali Reza Najafi, 2018. "Pricing European Options under Fractional Black–Scholes Model with a Weak Payoff Function," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 685-706, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Longjin & Xiao, Jianbin & Fan, Liangzhong & Ren, Fuyao, 2016. "Correlated continuous time random walk and option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 100-107.
    2. Wang, Jun & Liang, Jin-Rong & Lv, Long-Jin & Qiu, Wei-Yuan & Ren, Fu-Yao, 2012. "Continuous time Black–Scholes equation with transaction costs in subdiffusive fractional Brownian motion regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 750-759.
    3. Haq, Sirajul & Hussain, Manzoor, 2018. "Selection of shape parameter in radial basis functions for solution of time-fractional Black–Scholes models," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 248-263.
    4. Lina Song, 2018. "A Semianalytical Solution of the Fractional Derivative Model and Its Application in Financial Market," Complexity, Hindawi, vol. 2018, pages 1-10, April.
    5. R. Kalantari & S. Shahmorad, 2019. "A Stable and Convergent Finite Difference Method for Fractional Black–Scholes Model of American Put Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 191-205, January.
    6. Stoyan V. Stoyanov & Yong Shin Kim & Svetlozar T. Rachev & Frank J. Fabozzi, 2017. "Option pricing for Informed Traders," Papers 1711.09445, arXiv.org.
    7. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    8. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.
    9. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    10. Boyarchenko, Svetlana & Levendorskii[caron], Sergei, 2007. "Optimal stopping made easy," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 201-217, February.
    11. Robert C. Merton, 2006. "Paul Samuelson and Financial Economics," The American Economist, Sage Publications, vol. 50(2), pages 9-31, October.
    12. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.
    13. Sergio Zúñiga, 1999. "Modelos de Tasas de Interés en Chile: Una Revisión," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 36(108), pages 875-893.
    14. Zhijian (James) Huang & Yuchen Luo, 2016. "Revisiting Structural Modeling of Credit Risk—Evidence from the Credit Default Swap (CDS) Market," JRFM, MDPI, vol. 9(2), pages 1-20, May.
    15. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    16. Mastinšek Miklavž, 2015. "Reduction of the Mean Hedging Transaction Costs / Redukcija povprečnih transakcijskih stroškov hedging tehnike," Naše gospodarstvo/Our economy, Sciendo, vol. 61(5), pages 23-31, October.
    17. Jérôme Detemple, 1999. "American Options: Symmetry Properties," CIRANO Working Papers 99s-45, CIRANO.
    18. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    19. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    20. Miao, Jianjun & Wang, Neng, 2007. "Investment, consumption, and hedging under incomplete markets," Journal of Financial Economics, Elsevier, vol. 86(3), pages 608-642, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:21:p:4809-4818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.