IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v64y2024i1d10.1007_s10614-023-10444-w.html
   My bibliography  Save this article

An Efficient Numerical Scheme to Approach the Time Fractional Black–Scholes Model Using Orthogonal Gegenbauer Polynomials

Author

Listed:
  • Y. Esmaeelzade Aghdam

    (Shahid Rajaee Teacher Training University)

  • H. Mesgarani

    (Shahid Rajaee Teacher Training University)

  • A. Amin

    (Shahid Rajaee Teacher Training University)

  • J. F. Gómez-Aguilar

    (CONACyT-Tecnológico Nacional de México)

Abstract

This paper proposes an efficient procedure to estimate the fractional Black–Scholes model in time-dependent on the market prices of European options using the composition of the orthogonal Gegenbauer polynomials (GB polynomials) and the approximation of the fractional derivative dependent on the Caputo derivative. First, the payoff function’s singularity leads to a slow convergence in time. So, We construct an accurate and fast numerical method based on the improved method to restore the convergence rate. The derivative operational matrices for orthogonal GB polynomials are obtained by the fractional Caputo-type derivative. The implementation of this algorithm has high accuracy. The advantage of the numerical method is the orthogonality of GB polynomials and operational matrices, which reduces computation time and increases speed. Finally, three numerical examples are provided to illustrate the validity, and the numerical experiments are presented to illustrate the accuracy and efficiency of the proposed method.

Suggested Citation

  • Y. Esmaeelzade Aghdam & H. Mesgarani & A. Amin & J. F. Gómez-Aguilar, 2024. "An Efficient Numerical Scheme to Approach the Time Fractional Black–Scholes Model Using Orthogonal Gegenbauer Polynomials," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 211-224, July.
  • Handle: RePEc:kap:compec:v:64:y:2024:i:1:d:10.1007_s10614-023-10444-w
    DOI: 10.1007/s10614-023-10444-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-023-10444-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-023-10444-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cartea, Álvaro & del-Castillo-Negrete, Diego, 2007. "Fractional diffusion models of option prices in markets with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 749-763.
    2. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    3. Jumarie, Guy, 2008. "Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Application to fractional Black-Scholes equations," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 271-287, February.
    4. Khaliq, A.Q.M. & Voss, D.A. & Kazmi, S.H.K., 2006. "A linearly implicit predictor-corrector scheme for pricing American options using a penalty method approach," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 489-502, February.
    5. Ilia Bouchouev & Victor Isakov & Nicolas Valdivia, 2002. "Recovery of volatility coefficient by linearization," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 257-263.
    6. Jian Geng & I. Michael Navon & Xiao Chen, 2014. "Non-parametric calibration of the local volatility surface for European options using a second-order Tikhonov regularization," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 73-85, January.
    7. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    8. Chengxuan Xie & Xiaoxiao Xia & Yones Esmaeelzade Aghdam & Behnaz Farnam & Hossein Jafari & Shuchun Wang, 2022. "The Numerical Strategy Of Tempered Fractional Derivative In European Double Barrier Option," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(01), pages 1-10, February.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. Ahmad Golbabai & Omid Nikan, 2020. "A Computational Method Based on the Moving Least-Squares Approach for Pricing Double Barrier Options in a Time-Fractional Black–Scholes Model," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 119-141, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Y. Esmaeelzade Aghdam & H. Mesgarani & A. Adl & B. Farnam, 2023. "The Convergence Investigation of a Numerical Scheme for the Tempered Fractional Black-Scholes Model Arising European Double Barrier Option," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 513-528, February.
    2. Zhang, Meihui & Jia, Jinhong & Zheng, Xiangcheng, 2023. "Numerical approximation and fast implementation to a generalized distributed-order time-fractional option pricing model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    3. Changhong Guo & Shaomei Fang & Yong He, 2023. "Derivation and Application of Some Fractional Black–Scholes Equations Driven by Fractional G-Brownian Motion," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1681-1705, April.
    4. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    5. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    6. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    7. Chang, Eric C. & Ren, Jinjuan & Shi, Qi, 2009. "Effects of the volatility smile on exchange settlement practices: The Hong Kong case," Journal of Banking & Finance, Elsevier, vol. 33(1), pages 98-112, January.
    8. Rui Vilela Mendes & M. J. Oliveira, 2006. "A data-reconstructed fractional volatility model," Papers math/0602013, arXiv.org, revised Jun 2007.
    9. Michel Vellekoop & Hans Nieuwenhuis, 2007. "On option pricing models in the presence of heavy tails," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 563-573.
    10. Bertsimas, Dimitris. & Kogan, Leonid, 1974- & Lo, Andrew W., 1997. "Pricing and hedging derivative securities in incomplete markets : an e-arbitrage approach," Working papers WP 3973-97., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    11. Ncube, Mthuli, 1996. "Modelling implied volatility with OLS and panel data models," Journal of Banking & Finance, Elsevier, vol. 20(1), pages 71-84, January.
    12. Ballestra, Luca Vincenzo & Cecere, Liliana, 2016. "A numerical method to estimate the parameters of the CEV model implied by American option prices: Evidence from NYSE," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 100-106.
    13. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    14. Peter A. Abken & Saikat Nandi, 1996. "Options and volatility," Economic Review, Federal Reserve Bank of Atlanta, vol. 81(Dec), pages 21-35.
    15. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    16. Carey, Alexander, 2008. "Natural volatility and option pricing," MPRA Paper 6709, University Library of Munich, Germany.
    17. Rodrigue Oeuvray & Pascal Junod, 2013. "On time scaling of semivariance in a jump-diffusion process," Papers 1311.1122, arXiv.org.
    18. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    19. Benhamou, Eric & Duguet, Alexandre, 2003. "Small dimension PDE for discrete Asian options," Journal of Economic Dynamics and Control, Elsevier, vol. 27(11-12), pages 2095-2114, September.
    20. Mohammad Abedi & Daniel Bartolomeo, 2019. "Entropic Dynamics of Exchange Rates and Options," Papers 1908.06358, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:64:y:2024:i:1:d:10.1007_s10614-023-10444-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.