IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v64y2024i4d10.1007_s10614-023-10500-5.html
   My bibliography  Save this article

An Efficient Numerical Method Based on Exponential B-splines for a Time-Fractional Black–Scholes Equation Governing European Options

Author

Listed:
  • Anshima Singh

    (Indian Institute of Technology (BHU))

  • Sunil Kumar

    (Indian Institute of Technology (BHU))

Abstract

In this paper a time-fractional Black–Scholes model (TFBSM) is considered to study the price change of the underlying fractal transmission system. We develop and analyze a numerical method to solve the TFBSM governing European options. The numerical method combines the exponential B-spline collocation to discretize in space and a finite difference method to discretize in time. The method is shown to be unconditionally stable using von-Neumann analysis. Also, the method is proved to be convergent of order two in space and $$2-\mu $$ 2 - μ is time, where $$\mu $$ μ is order of the fractional derivative. We implement the method on various numerical examples in order to illustrate the accuracy of the method, and validation of the theoretical findings. In addition, as an application, the method is used to price several different European options such as the European call option, European put option, and European double barrier knock-out call option. Moreover, the classical Black–Scholes model is also incorporated into our numerical study to validate the competence of our method in handling not only fractional problems, but also classical ones with favorable results.

Suggested Citation

  • Anshima Singh & Sunil Kumar, 2024. "An Efficient Numerical Method Based on Exponential B-splines for a Time-Fractional Black–Scholes Equation Governing European Options," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 1965-2002, October.
  • Handle: RePEc:kap:compec:v:64:y:2024:i:4:d:10.1007_s10614-023-10500-5
    DOI: 10.1007/s10614-023-10500-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-023-10500-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-023-10500-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:64:y:2024:i:4:d:10.1007_s10614-023-10500-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.