IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v18y2024i1s1751157723000925.html
   My bibliography  Save this article

Enhancing semantic text similarity with functional semantic knowledge (FOP) in patents

Author

Listed:
  • Teng, Hao
  • Wang, Nan
  • Zhao, Hongyu
  • Hu, Yingtong
  • Jin, Haitao

Abstract

The semantic text similarity (STS) estimation between patents is a critical issue for the patent portfolio analysis. Current methods such as keywords, co-word analysis and even the Subject-Action-Object (SAO) algorithms, are not quite reasonable for the patent similarity calculation due to the lack of fine-grained semantic knowledge, “property-parameter” features and flexible “functional or non-functional” combinations. In the meanwhile, standardized similarity datasets are also unavailable. In this paper, we have proposed a new kind of functional semantic knowledge (Function-Object-Property, i.e., FOP) instead of SAO triples, which can contribute directly to enhance the patent similarity. Moreover, patent STS datasets, including the matching dataset and the ranking dataset, have firstly been processed and released as benchmarks for the comparative evaluation. Preliminary results have demonstrated that FOP-based methods are more appropriate in the STS tasks incorporated with IPC codes, weights’ assignments and patent pre-trained vectors. To be further, the deep interaction-based models with the averaged FOP embeddings are recommended to be one of the most optimal choices of effectively improving the semantic learning capability. Finally, a new patent similarity calculation framework is summarized and successfully applied in the patent retrieval, which highlight that the proposed methodology serves as a dominant power in diverse patented STS tasks.

Suggested Citation

  • Teng, Hao & Wang, Nan & Zhao, Hongyu & Hu, Yingtong & Jin, Haitao, 2024. "Enhancing semantic text similarity with functional semantic knowledge (FOP) in patents," Journal of Informetrics, Elsevier, vol. 18(1).
  • Handle: RePEc:eee:infome:v:18:y:2024:i:1:s1751157723000925
    DOI: 10.1016/j.joi.2023.101467
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157723000925
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2023.101467?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Janghyeok Yoon & Hyunseok Park & Kwangsoo Kim, 2013. "Identifying technological competition trends for R&D planning using dynamic patent maps: SAO-based content analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 313-331, January.
    2. Xuefeng Wang & Huichao Ren & Yun Chen & Yuqin Liu & Yali Qiao & Ying Huang, 2019. "Measuring patent similarity with SAO semantic analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 1-23, October.
    3. Xiaozhong Liu & Jinsong Zhang & Chun Guo, 2013. "Full‐text citation analysis: A new method to enhance scholarly networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(9), pages 1852-1863, September.
    4. Liang Chen & Shuo Xu & Lijun Zhu & Jing Zhang & Xiaoping Lei & Guancan Yang, 2020. "A deep learning based method for extracting semantic information from patent documents," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 289-312, October.
    5. Sungchul Choi & Janghyeok Yoon & Kwangsoo Kim & Jae Yeol Lee & Cheol-Han Kim, 2011. "SAO network analysis of patents for technology trends identification: a case study of polymer electrolyte membrane technology in proton exchange membrane fuel cells," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(3), pages 863-883, September.
    6. Sam Arts & Bruno Cassiman & Juan Carlos Gomez, 2018. "Text matching to measure patent similarity," Strategic Management Journal, Wiley Blackwell, vol. 39(1), pages 62-84, January.
    7. Chao Yang & Donghua Zhu & Xuefeng Wang & Yi Zhang & Guangquan Zhang & Jie Lu, 2017. "Requirement-oriented core technological components’ identification based on SAO analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1229-1248, September.
    8. Andrew Rodriguez & Byunghoon Kim & Mehmet Turkoz & Jae-Min Lee & Byoung-Youl Coh & Myong K. Jeong, 2015. "New multi-stage similarity measure for calculation of pairwise patent similarity in a patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 565-581, May.
    9. Janghyeok Yoon & Kwangsoo Kim, 2012. "Detecting signals of new technological opportunities using semantic patent analysis and outlier detection," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 445-461, February.
    10. An, Xin & Li, Jinghong & Xu, Shuo & Chen, Liang & Sun, Wei, 2021. "An improved patent similarity measurement based on entities and semantic relations," Journal of Informetrics, Elsevier, vol. 15(2).
    11. Hain, Daniel S. & Jurowetzki, Roman & Buchmann, Tobias & Wolf, Patrick, 2022. "A text-embedding-based approach to measuring patent-to-patent technological similarity," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    12. Choi, Jinho & Hwang, Yong-Sik, 2014. "Patent keyword network analysis for improving technology development efficiency," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 170-182.
    13. Ryan Whalen & Alina Lungeanu & Leslie DeChurch & Noshir Contractor, 2020. "Patent Similarity Data and Innovation Metrics," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 17(3), pages 615-639, September.
    14. Xiaozhong Liu & Jinsong Zhang & Chun Guo, 2013. "Full-text citation analysis: A new method to enhance scholarly networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(9), pages 1852-1863, September.
    15. Xuefeng Wang & Pingping Ma & Ying Huang & Junfang Guo & Donghua Zhu & Alan L. Porter & Zhinan Wang, 2017. "Combining SAO semantic analysis and morphology analysis to identify technology opportunities," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 3-24, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. An, Xin & Li, Jinghong & Xu, Shuo & Chen, Liang & Sun, Wei, 2021. "An improved patent similarity measurement based on entities and semantic relations," Journal of Informetrics, Elsevier, vol. 15(2).
    2. Hain, Daniel S. & Jurowetzki, Roman & Buchmann, Tobias & Wolf, Patrick, 2022. "A text-embedding-based approach to measuring patent-to-patent technological similarity," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    3. Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
    4. Changyong Lee & Gyumin Lee, 2019. "Technology opportunity analysis based on recombinant search: patent landscape analysis for idea generation," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 603-632, November.
    5. Yang, Chao & Huang, Cui & Su, Jun, 2018. "An improved SAO network-based method for technology trend analysis: A case study of graphene," Journal of Informetrics, Elsevier, vol. 12(1), pages 271-286.
    6. Xuefeng Wang & Huichao Ren & Yun Chen & Yuqin Liu & Yali Qiao & Ying Huang, 2019. "Measuring patent similarity with SAO semantic analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 1-23, October.
    7. Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
    8. Chen, Liang & Xu, Shuo & Zhu, Lijun & Zhang, Jing & Yang, Guancan & Xu, Haiyun, 2022. "A deep learning based method benefiting from characteristics of patents for semantic relation classification," Journal of Informetrics, Elsevier, vol. 16(3).
    9. Guangtong Li & L. Siddharth & Jianxi Luo, 2023. "Embedding knowledge graph of patent metadata to measure knowledge proximity," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(4), pages 476-490, April.
    10. Natalie A. Carlson, 2023. "Differentiation in microenterprises," Strategic Management Journal, Wiley Blackwell, vol. 44(5), pages 1141-1167, May.
    11. Hofmann, Peter & Keller, Robert & Urbach, Nils, 2019. "Inter-technology relationship networks: Arranging technologies through text mining," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 202-213.
    12. Hanlin You & Mengjun Li & Jiang Jiang & Bingfeng Ge & Xueting Zhang, 2017. "Evolution monitoring for innovation sources using patent cluster analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 693-715, May.
    13. Jiwon Yu & Jong-Gyu Hwang & Jumi Hwang & Sung Chan Jun & Sumin Kang & Chulung Lee & Hyundong Kim, 2020. "Identification of Vacant and Emerging Technologies in Smart Mobility Through the GTM-Based Patent Map Development," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    14. Wei Du & Yibo Wang & Wei Xu & Jian Ma, 2021. "A personalized recommendation system for high-quality patent trading by leveraging hybrid patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9369-9391, December.
    15. José Manuel López‐Fernández & Mariluz Maté‐Sánchez‐Val & Francisco Manuel Somohano‐Rodriguez, 2021. "The effect of micro‐territorial networks on industrial small and medium enterprises' innovation: A case study in the Spanish region of Cantabria," Papers in Regional Science, Wiley Blackwell, vol. 100(1), pages 51-77, February.
    16. Jaewoong Choi & Jiho Lee & Janghyeok Yoon & Sion Jang & Jaeyoung Kim & Sungchul Choi, 2022. "A two-stage deep learning-based system for patent citation recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6615-6636, November.
    17. Han, Xiaotong & Zhu, Donghua & Lei, Ming & Daim, Tugrul, 2021. "R&D trend analysis based on patent mining: An integrated use of patent applications and invalidation data," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    18. Li, Xin & Wu, Yundi & Cheng, Haolun & Xie, Qianqian & Daim, Tugrul, 2023. "Identifying technology opportunity using SAO semantic mining and outlier detection method: A case of triboelectric nanogenerator technology," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    19. Jee, Jeonghun & Park, Sanghyun & Lee, Sungjoo, 2022. "Potential of patent image data as technology intelligence source," Journal of Informetrics, Elsevier, vol. 16(2).
    20. Gaizka Garechana & Rosa Río-Belver & Enara Zarrabeitia & Izaskun Alvarez-Meaza, 2022. "TeknoAssistant : a domain specific tech mining approach for technical problem-solving support," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5459-5473, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:18:y:2024:i:1:s1751157723000925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.