IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v16y2022i2s1751157722000153.html
   My bibliography  Save this article

Potential of patent image data as technology intelligence source

Author

Listed:
  • Jee, Jeonghun
  • Park, Sanghyun
  • Lee, Sungjoo

Abstract

With recent advances in natural language processing and data analytics techniques, useful insights can be extracted not only from bibliographic data but also from the descriptive data of patents. Now, those advances have enabled the use of patent image data as a source of technology intelligence in addition to the two conventional types of patent data. Accordingly, this study focuses on the potential of patent image data and proposes an analysis method for investigating product/service/technology structures using block diagram images among the several types of images in patent documents. Using keywords extracted from patent block diagrams, the following four applications were introduced: (1) analysis of technology evolution, (2) in-depth investigation of technological elements, (3) comparative analysis with competitors, and (4) search for similar patents. The research findings of a case study on mobile earphone technology indicate that keywords are closely related to technological elements, and the four applications are found to be feasible. This study is among the first attempts to support technology intelligence using patent image data. It is also expected to be beneficial in subsequent studies and in practice, wherein patent image data convey valuable information regarding inventions.

Suggested Citation

  • Jee, Jeonghun & Park, Sanghyun & Lee, Sungjoo, 2022. "Potential of patent image data as technology intelligence source," Journal of Informetrics, Elsevier, vol. 16(2).
  • Handle: RePEc:eee:infome:v:16:y:2022:i:2:s1751157722000153
    DOI: 10.1016/j.joi.2022.101263
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157722000153
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2022.101263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yongho Lee & So Young Kim & Inseok Song & Yongtae Park & Juneseuk Shin, 2014. "Technology opportunity identification customized to the technological capability of SMEs through two-stage patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 227-244, July.
    2. Janghyeok Yoon & Hyunseok Park & Kwangsoo Kim, 2013. "Identifying technological competition trends for R&D planning using dynamic patent maps: SAO-based content analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 313-331, January.
    3. Kyuwoong Kim & Kyeongmin Park & Sungjoo Lee, 2019. "Investigating technology opportunities: the use of SAOx analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 45-70, January.
    4. An, Jaehyeong & Kim, Kyuwoong & Mortara, Letizia & Lee, Sungjoo, 2018. "Deriving technology intelligence from patents: Preposition-based semantic analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 217-236.
    5. Vrochidis, Stefanos & Papadopoulos, Symeon & Moumtzidou, Anastasia & Sidiropoulos, Panagiotis & Pianta, Emanuelle & Kompatsiaris, Ioannis, 2010. "Towards content-based patent image retrieval: A framework perspective," World Patent Information, Elsevier, vol. 32(2), pages 94-106, June.
    6. Byunghoon Kim & Gianluca Gazzola & Jae-Min Lee & Dohyun Kim & Kanghoe Kim & Myong K. Jeong, 2014. "Inter-cluster connectivity analysis for technology opportunity discovery," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1811-1825, March.
    7. von Wartburg, Iwan & Teichert, Thorsten & Rost, Katja, 2005. "Inventive progress measured by multi-stage patent citation analysis," Research Policy, Elsevier, vol. 34(10), pages 1591-1607, December.
    8. An, Xin & Li, Jinghong & Xu, Shuo & Chen, Liang & Sun, Wei, 2021. "An improved patent similarity measurement based on entities and semantic relations," Journal of Informetrics, Elsevier, vol. 15(2).
    9. Choi, Jinho & Hwang, Yong-Sik, 2014. "Patent keyword network analysis for improving technology development efficiency," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 170-182.
    10. Byungun Yoon & Sungjoo Lee & Gwanghee Lee, 2010. "Development and application of a keyword-based knowledge map for effective R&D planning," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(3), pages 803-820, December.
    11. Huang, Mu-Hsuan & Yang, Hsiao-Wen & Chen, Dar-Zen, 2015. "Increasing science and technology linkage in fuel cells: A cross citation analysis of papers and patents," Journal of Informetrics, Elsevier, vol. 9(2), pages 237-249.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
    2. Mun, Changbae & Yoon, Sejun & Raghavan, Nagarajan & Hwang, Dongwook & Basnet, Subarna & Park, Hyunseok, 2021. "Function score-based technological trend analysis," Technovation, Elsevier, vol. 101(C).
    3. Jungpyo Lee & So Young Sohn, 2021. "Recommendation system for technology convergence opportunities based on self-supervised representation learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 1-25, January.
    4. Lee, MyoungHoon & Kim, Suhyeon & Kim, Hangyeol & Lee, Junghye, 2022. "Technology Opportunity Discovery using Deep Learning-based Text Mining and a Knowledge Graph," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    5. Lijie Feng & Yuxiang Niu & Zhenfeng Liu & Jinfeng Wang & Ke Zhang, 2019. "Discovering Technology Opportunity by Keyword-Based Patent Analysis: A Hybrid Approach of Morphology Analysis and USIT," Sustainability, MDPI, vol. 12(1), pages 1-35, December.
    6. Han, Xiaotong & Zhu, Donghua & Lei, Ming & Daim, Tugrul, 2021. "R&D trend analysis based on patent mining: An integrated use of patent applications and invalidation data," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    7. Teng, Hao & Wang, Nan & Zhao, Hongyu & Hu, Yingtong & Jin, Haitao, 2024. "Enhancing semantic text similarity with functional semantic knowledge (FOP) in patents," Journal of Informetrics, Elsevier, vol. 18(1).
    8. Park, Youngjin & Yoon, Janghyeok, 2017. "Application technology opportunity discovery from technology portfolios: Use of patent classification and collaborative filtering," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 170-183.
    9. Xiao Zhou & Lu Huang & Yi Zhang & Miaomiao Yu, 2019. "A hybrid approach to detecting technological recombination based on text mining and patent network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 699-737, November.
    10. Lai, Kuei-Kuei & Chen, Yu-Long & Kumar, Vimal & Daim, Tugrul & Verma, Pratima & Kao, Fang-Chen & Liu, Ruirong, 2023. "Mapping technological trajectories and exploring knowledge sources: A case study of E-payment technologies," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    11. Kyuwoong Kim & Kyeongmin Park & Sungjoo Lee, 2019. "Investigating technology opportunities: the use of SAOx analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 45-70, January.
    12. Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
    13. Christian Mühlroth & Michael Grottke, 2018. "A systematic literature review of mining weak signals and trends for corporate foresight," Journal of Business Economics, Springer, vol. 88(5), pages 643-687, July.
    14. Chen, Liang & Xu, Shuo & Zhu, Lijun & Zhang, Jing & Yang, Guancan & Xu, Haiyun, 2022. "A deep learning based method benefiting from characteristics of patents for semantic relation classification," Journal of Informetrics, Elsevier, vol. 16(3).
    15. Jason Jihoon Ree & Cheolhyun Jeong & Hyunseok Park & Kwangsoo Kim, 2019. "Context–Problem Network and Quantitative Method of Patent Analysis: A Case Study of Wireless Energy Transmission Technology," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    16. An, Xin & Li, Jinghong & Xu, Shuo & Chen, Liang & Sun, Wei, 2021. "An improved patent similarity measurement based on entities and semantic relations," Journal of Informetrics, Elsevier, vol. 15(2).
    17. Junwei Ma & Jianhua Wang & Philip Szmedra, 2019. "Sustainable Competitive Position of Mobile Communication Companies: Comprehensive Perspectives of Insiders and Outsiders," Sustainability, MDPI, vol. 11(7), pages 1-15, April.
    18. Jinho Choi & Yong Sik Chang, 2020. "Development of a New Methodology to Identity Promising Technology Areas Using M&A Information," Sustainability, MDPI, vol. 12(14), pages 1-25, July.
    19. Jiwon Yu & Jong-Gyu Hwang & Jumi Hwang & Sung Chan Jun & Sumin Kang & Chulung Lee & Hyundong Kim, 2020. "Identification of Vacant and Emerging Technologies in Smart Mobility Through the GTM-Based Patent Map Development," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    20. Wei Du & Yibo Wang & Wei Xu & Jian Ma, 2021. "A personalized recommendation system for high-quality patent trading by leveraging hybrid patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9369-9391, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:16:y:2022:i:2:s1751157722000153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.