IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v127y2022i9d10.1007_s11192-022-04280-2.html
   My bibliography  Save this article

TeknoAssistant : a domain specific tech mining approach for technical problem-solving support

Author

Listed:
  • Gaizka Garechana

    (University of the Basque Country (UPV/EHU))

  • Rosa Río-Belver

    (University of the Basque Country (UPV/EHU))

  • Enara Zarrabeitia

    (University of the Basque Country (UPV/EHU))

  • Izaskun Alvarez-Meaza

    (University of the Basque Country (UPV/EHU))

Abstract

This paper presents TeknoAssistant, a domain-specific tech mining method for building a problem–solution conceptual network aimed at helping technicians from a particular field to find alternative tools and pathways to implement when confronted with a problem. We evaluate our approach using Natural Language Processing field, and propose a 2-g text mining process adapted for analyzing scientific publications. We rely on a combination of custom indicators with Stanford OpenIE SAO extractor to build a Bernoulli Naïve Bayes classifier which is trained by using domain-specific vocabulary provided by the TeknoAssistant user. The 2-g contained in the abstracts of a scientific publication dataset are classified in either “problem”, “solution” or “none” categories, and a problem–solution network is built, based on the co-occurrence of problems and solutions in the abstracts. We propose a combination of clustering technique, visualization and Social Network Analysis indicators for guiding a hypothetical user in a domain-specific problem solving process.

Suggested Citation

  • Gaizka Garechana & Rosa Río-Belver & Enara Zarrabeitia & Izaskun Alvarez-Meaza, 2022. "TeknoAssistant : a domain specific tech mining approach for technical problem-solving support," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5459-5473, September.
  • Handle: RePEc:spr:scient:v:127:y:2022:i:9:d:10.1007_s11192-022-04280-2
    DOI: 10.1007/s11192-022-04280-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-022-04280-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-022-04280-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chao Yang & Donghua Zhu & Xuefeng Wang & Yi Zhang & Guangquan Zhang & Jie Lu, 2017. "Requirement-oriented core technological components’ identification based on SAO analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1229-1248, September.
    2. Xu, Shuo & Hao, Liyuan & Yang, Guancan & Lu, Kun & An, Xin, 2021. "A topic models based framework for detecting and forecasting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    3. Yi Zhang & Xiao Zhou & Alan L. Porter & Jose M. Vicente Gomila, 2014. "How to combine term clumping and technology roadmapping for newly emerging science & technology competitive intelligence: “problem & solution” pattern based semantic TRIZ tool and case study," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1375-1389, November.
    4. Janghyeok Yoon & Kwangsoo Kim, 2011. "Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 213-228, July.
    5. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    6. Kevin Heffernan & Simone Teufel, 2018. "Identifying problems and solutions in scientific text," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 1367-1382, August.
    7. Xuefeng Wang & Pingping Ma & Ying Huang & Junfang Guo & Donghua Zhu & Alan L. Porter & Zhinan Wang, 2017. "Combining SAO semantic analysis and morphology analysis to identify technology opportunities," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 3-24, April.
    8. Sungchul Choi & Janghyeok Yoon & Kwangsoo Kim & Jae Yeol Lee & Cheol-Han Kim, 2011. "SAO network analysis of patents for technology trends identification: a case study of polymer electrolyte membrane technology in proton exchange membrane fuel cells," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(3), pages 863-883, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Chao & Huang, Cui & Su, Jun, 2018. "An improved SAO network-based method for technology trend analysis: A case study of graphene," Journal of Informetrics, Elsevier, vol. 12(1), pages 271-286.
    2. Teng, Hao & Wang, Nan & Zhao, Hongyu & Hu, Yingtong & Jin, Haitao, 2024. "Enhancing semantic text similarity with functional semantic knowledge (FOP) in patents," Journal of Informetrics, Elsevier, vol. 18(1).
    3. He, Xi-jun & Meng, Xue & Dong, Yan-bo & Wu, Yu-ying, 2019. "Demand identification model of potential technology based on SAO structure semantic analysis: The case of new energy and energy saving fields," Technology in Society, Elsevier, vol. 58(C).
    4. Xuefeng Wang & Huichao Ren & Yun Chen & Yuqin Liu & Yali Qiao & Ying Huang, 2019. "Measuring patent similarity with SAO semantic analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 1-23, October.
    5. Kyuwoong Kim & Kyeongmin Park & Sungjoo Lee, 2019. "Investigating technology opportunities: the use of SAOx analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 45-70, January.
    6. Jan M. Gerken & Martin G. Moehrle, 2012. "A new instrument for technology monitoring: novelty in patents measured by semantic patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 645-670, June.
    7. Zamani, Mehdi & Yalcin, Haydar & Naeini, Ali Bonyadi & Zeba, Gordana & Daim, Tugrul U, 2022. "Developing metrics for emerging technologies: identification and assessment," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    8. Li, Xin & Xie, Qianqian & Jiang, Jiaojiao & Zhou, Yuan & Huang, Lucheng, 2019. "Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 687-705.
    9. Roman Jurowetzki, 2015. "Unpacking Big Systems - Natural Language Processing meets Network Analysis. A Study of Smart Grid Development in Denmark," SPRU Working Paper Series 2015-15, SPRU - Science Policy Research Unit, University of Sussex Business School.
    10. Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
    11. Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
    12. An, Jaehyeong & Kim, Kyuwoong & Mortara, Letizia & Lee, Sungjoo, 2018. "Deriving technology intelligence from patents: Preposition-based semantic analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 217-236.
    13. Guo, Junfang & Wang, Xuefeng & Li, Qianrui & Zhu, Donghua, 2016. "Subject–action–object-based morphology analysis for determining the direction of technological change," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 27-40.
    14. Hofmann, Peter & Keller, Robert & Urbach, Nils, 2019. "Inter-technology relationship networks: Arranging technologies through text mining," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 202-213.
    15. Jason Jihoon Ree & Cheolhyun Jeong & Hyunseok Park & Kwangsoo Kim, 2019. "Context–Problem Network and Quantitative Method of Patent Analysis: A Case Study of Wireless Energy Transmission Technology," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    16. Chao Yang & Donghua Zhu & Xuefeng Wang & Yi Zhang & Guangquan Zhang & Jie Lu, 2017. "Requirement-oriented core technological components’ identification based on SAO analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1229-1248, September.
    17. Ma, Jing & Abrams, Natalie F. & Porter, Alan L. & Zhu, Donghua & Farrell, Dorothy, 2019. "Identifying translational indicators and technology opportunities for nanomedical research using tech mining: The case of gold nanostructures," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 767-775.
    18. Farshad Madani, 2015. "‘Technology Mining’ bibliometrics analysis: applying network analysis and cluster analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 323-335, October.
    19. Ansgar Moeller & Martin G. Moehrle, 2015. "Completing keyword patent search with semantic patent search: introducing a semiautomatic iterative method for patent near search based on semantic similarities," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 77-96, January.
    20. Changbae Mun & Sejun Yoon & Hyunseok Park, 2019. "Structural decomposition of technological domain using patent co-classification and classification hierarchy," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 633-652, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:127:y:2022:i:9:d:10.1007_s11192-022-04280-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.