IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v189y2023ics0040162523000380.html
   My bibliography  Save this article

Identifying technology opportunity using SAO semantic mining and outlier detection method: A case of triboelectric nanogenerator technology

Author

Listed:
  • Li, Xin
  • Wu, Yundi
  • Cheng, Haolun
  • Xie, Qianqian
  • Daim, Tugrul

Abstract

With the high integration of science and technology development, how to early identify technology opportunity is crucial for the governments’ and enterprises’ research and development (R&D) strategic planning and innovation policy to gain a first-mover advantage in the market competition environment. Most researchers have applied Subject-Action-Object (SAO) semantic mining approach or outlier detection method to mine scientific papers or patent information for identifying technology opportunity. However, few researchers have combined information from both scientific papers and patents to identify technology opportunity by integrating SAO semantic mining and outlier detection method. Therefore, this paper proposes a research framework that uses scientific papers and patents as data resources, and integrates SAO semantic mining and outlier detection method to identify technology opportunity. In this framework, we first use the SAO semantic mining method to mine technical problems and solutions contained in scientific papers and patents respectively. Then we conduct comparative analysis to identify potential technology opportunity in the gaps between scientific papers and patents. Secondly, we use a outlier detection method to identify outlier points in scientific papers, and we incorporate the outlier points into the analysis scope of technology opportunity identification. Finally, we combine the results of SAO semantic mining method with outlier detection method, and use expert knowledge to identify technology opportunity. The triboelectric nanogenerator technology is selected as a case study to verify the feasibility of this framework. The results show that the framework can effectively and comprehensively identify technology opportunity from the two levels of technical problems and technical solutions. This paper contributes to technology opportunity study, and will be of interest to triboelectric nanogenerator technology R&D experts.

Suggested Citation

  • Li, Xin & Wu, Yundi & Cheng, Haolun & Xie, Qianqian & Daim, Tugrul, 2023. "Identifying technology opportunity using SAO semantic mining and outlier detection method: A case of triboelectric nanogenerator technology," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:tefoso:v:189:y:2023:i:c:s0040162523000380
    DOI: 10.1016/j.techfore.2023.122353
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162523000380
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2023.122353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yongho Lee & So Young Kim & Inseok Song & Yongtae Park & Juneseuk Shin, 2014. "Technology opportunity identification customized to the technological capability of SMEs through two-stage patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 227-244, July.
    2. Changyong Lee & Gyumin Lee, 2019. "Technology opportunity analysis based on recombinant search: patent landscape analysis for idea generation," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 603-632, November.
    3. Meyer, Martin, 2000. "Does science push technology? Patents citing scientific literature," Research Policy, Elsevier, vol. 29(3), pages 409-434, March.
    4. Park, Inchae & Yoon, Byungun, 2018. "Technological opportunity discovery for technological convergence based on the prediction of technology knowledge flow in a citation network," Journal of Informetrics, Elsevier, vol. 12(4), pages 1199-1222.
    5. Xuefeng Wang & Huichao Ren & Yun Chen & Yuqin Liu & Yali Qiao & Ying Huang, 2019. "Measuring patent similarity with SAO semantic analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 1-23, October.
    6. Yoon, Byungun & Magee, Christopher L., 2018. "Exploring technology opportunities by visualizing patent information based on generative topographic mapping and link prediction," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 105-117.
    7. Wang, Ming-Yeu & Fang, Shih-Chieh & Chang, Yu-Hsuan, 2015. "Exploring technological opportunities by mining the gaps between science and technology: Microalgal biofuels," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 182-195.
    8. Park, Youngjin & Yoon, Janghyeok, 2017. "Application technology opportunity discovery from technology portfolios: Use of patent classification and collaborative filtering," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 170-183.
    9. Lee, Changyong & Kang, Bokyoung & Shin, Juneseuk, 2015. "Novelty-focused patent mapping for technology opportunity analysis," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 355-365.
    10. Jinzhu Zhang & Wenqian Yu, 2020. "Early detection of technology opportunity based on analogy design and phrase semantic representation," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 551-576, October.
    11. Janghyeok Yoon & Kwangsoo Kim, 2012. "Detecting signals of new technological opportunities using semantic patent analysis and outlier detection," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 445-461, February.
    12. Taeyeoun Roh & Yujin Jeong & Hyejin Jang & Byungun Yoon, 2019. "Technology opportunity discovery by structuring user needs based on natural language processing and machine learning," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-27, October.
    13. Xuan Shi & Lingfei Cai & Hongfang Song, 2019. "Discovering Potential Technology Opportunities for Fuel Cell Vehicle Firms: A Multi-Level Patent Portfolio-Based Approach," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
    14. Yang, Chao & Huang, Cui & Su, Jun, 2018. "An improved SAO network-based method for technology trend analysis: A case study of graphene," Journal of Informetrics, Elsevier, vol. 12(1), pages 271-286.
    15. Bildosola, Iñaki & Río-Bélver, Rosa María & Garechana, Gaizka & Cilleruelo, Ernesto, 2017. "TeknoRoadmap, an approach for depicting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 25-37.
    16. Choi, Jaewoong & Jeong, Byeongki & Yoon, Janghyeok, 2019. "Technology opportunity discovery under the dynamic change of focus technology fields: Application of sequential pattern mining to patent classifications," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    17. Lijie Feng & Yuxiang Niu & Zhenfeng Liu & Jinfeng Wang & Ke Zhang, 2019. "Discovering Technology Opportunity by Keyword-Based Patent Analysis: A Hybrid Approach of Morphology Analysis and USIT," Sustainability, MDPI, vol. 12(1), pages 1-35, December.
    18. Lee, Changyong & Jeon, Daeseong & Ahn, Joon Mo & Kwon, Ohjin, 2020. "Navigating a product landscape for technology opportunity analysis: A word2vec approach using an integrated patent-product database," Technovation, Elsevier, vol. 96.
    19. Seo, Wonchul & Yoon, Janghyeok & Park, Hyunseok & Coh, Byoung-youl & Lee, Jae-Min & Kwon, Oh-Jin, 2016. "Product opportunity identification based on internal capabilities using text mining and association rule mining," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 94-104.
    20. Ogawa, Takaya & Kajikawa, Yuya, 2015. "Assessing the industrial opportunity of academic research with patent relatedness: A case study on polymer electrolyte fuel cells," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 469-475.
    21. Li, Xin & Xie, Qianqian & Daim, Tugrul & Huang, Lucheng, 2019. "Forecasting technology trends using text mining of the gaps between science and technology: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 432-449.
    22. Byunghoon Kim & Gianluca Gazzola & Jaekyung Yang & Jae-Min Lee & Byoung-Youl Coh & Myong K. Jeong & Young-Seon Jeong, 2017. "Two-phase edge outlier detection method for technology opportunity discovery," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 1-16, October.
    23. Sungchul Choi & Janghyeok Yoon & Kwangsoo Kim & Jae Yeol Lee & Cheol-Han Kim, 2011. "SAO network analysis of patents for technology trends identification: a case study of polymer electrolyte membrane technology in proton exchange membrane fuel cells," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(3), pages 863-883, September.
    24. Williams, Robin & Edge, David, 1996. "The social shaping of technology," Research Policy, Elsevier, vol. 25(6), pages 865-899, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ba, Zhichao & Meng, Kai & Ma, Yaxue & Xia, Yikun, 2024. "Discovering technological opportunities by identifying dynamic structure-coupling patterns and lead-lag distance between science and technology," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    2. Su, Yu-Shan & Huang, Hsini & Daim, Tugrul & Chien, Pan-Wei & Peng, Ru-Ling & Karaman Akgul, Arzu, 2023. "Assessing the technological trajectory of 5G-V2X autonomous driving inventions: Use of patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 196(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
    2. Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
    3. Jinzhu Zhang & Wenqian Yu, 2020. "Early detection of technology opportunity based on analogy design and phrase semantic representation," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 551-576, October.
    4. Seol, Youngjin & Lee, Seunghyun & Kim, Cheolhan & Yoon, Janghyeok & Choi, Jaewoong, 2023. "Towards firm-specific technology opportunities: A rule-based machine learning approach to technology portfolio analysis," Journal of Informetrics, Elsevier, vol. 17(4).
    5. Wu, Yingwen & Ji, Yangjian, 2023. "Identifying firm-specific technology opportunities from the perspective of competitors by using association rule mining," Journal of Informetrics, Elsevier, vol. 17(2).
    6. Seunghyun Oh & Jaewoong Choi & Namuk Ko & Janghyeok Yoon, 2020. "Predicting product development directions for new product planning using patent classification-based link prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1833-1876, December.
    7. Lee, MyoungHoon & Kim, Suhyeon & Kim, Hangyeol & Lee, Junghye, 2022. "Technology Opportunity Discovery using Deep Learning-based Text Mining and a Knowledge Graph," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    8. Lee, Jiho & Ko, Namuk & Yoon, Janghyeok & Son, Changho, 2021. "An approach for discovering firm-specific technology opportunities: Application of link prediction to F-term networks," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    9. Han, Xiaotong & Zhu, Donghua & Lei, Ming & Daim, Tugrul, 2021. "R&D trend analysis based on patent mining: An integrated use of patent applications and invalidation data," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    10. Choi, Jaewoong & Lee, Changyong & Yoon, Janghyeok, 2023. "Exploring a technology ecology for technology opportunity discovery: A link prediction approach using heterogeneous knowledge graphs," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    11. Choi, Jaewoong & Jeong, Byeongki & Yoon, Janghyeok, 2019. "Technology opportunity discovery under the dynamic change of focus technology fields: Application of sequential pattern mining to patent classifications," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    12. Lee, Changyong, 2021. "A review of data analytics in technological forecasting," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    13. Juite Wang & Tzu-Yen Hsu, 2023. "Early discovery of emerging multi-technology convergence for analyzing technology opportunities from patent data: the case of smart health," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4167-4196, August.
    14. Shen, Yung-Chi & Wang, Ming-Yeu & Yang, Ya-Chu, 2020. "Discovering the potential opportunities of scientific advancement and technological innovation: A case study of smart health monitoring technology," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    15. Xuan Shi & Lingfei Cai & Hongfang Song, 2019. "Discovering Potential Technology Opportunities for Fuel Cell Vehicle Firms: A Multi-Level Patent Portfolio-Based Approach," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
    16. Ba, Zhichao & Meng, Kai & Ma, Yaxue & Xia, Yikun, 2024. "Discovering technological opportunities by identifying dynamic structure-coupling patterns and lead-lag distance between science and technology," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    17. Wang, Jinfeng & Zhang, Zhixin & Feng, Lijie & Lin, Kuo-Yi & Liu, Peng, 2023. "Development of technology opportunity analysis based on technology landscape by extending technology elements with BERT and TRIZ," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    18. Lijie Feng & Yuxiang Niu & Zhenfeng Liu & Jinfeng Wang & Ke Zhang, 2019. "Discovering Technology Opportunity by Keyword-Based Patent Analysis: A Hybrid Approach of Morphology Analysis and USIT," Sustainability, MDPI, vol. 12(1), pages 1-35, December.
    19. Teng, Fei & Sun, Yuling & Chen, Fang & Qin, Aning & Zhang, Qi, 2021. "Technology opportunity discovery of proton exchange membrane fuel cells based on generative topographic mapping," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    20. Changyong Lee & Gyumin Lee, 2019. "Technology opportunity analysis based on recombinant search: patent landscape analysis for idea generation," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 603-632, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:189:y:2023:i:c:s0040162523000380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.