IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v65y2019i3p1363-1385.html
   My bibliography  Save this article

Modeling Consumer Footprints on Search Engines: An Interplay with Social Media

Author

Listed:
  • Anindya Ghose

    (Stern School of Business, New York University, New York, New York 10012)

  • Panagiotis G. Ipeirotis

    (Stern School of Business, New York University, New York, New York 10012)

  • Beibei Li

    (Heinz College, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213)

Abstract

It is now well understood that social media plays an increasingly important role in consumers’ decision making. However, an overload of social media content in product search engines can hinder consumers from efficiently seeking information. We propose a structural econometric model to understand consumers’ preferences and costs on search engines to improve user experience under unstructured social media. Our model combines an optimal stopping framework with an individual-level random utility choice model and analyzes click behavior in conjunction with purchase choices. Our model accounts for three major constraints in a consumer’s decision-making process: (1) interdependency in decision making for different alternatives, (2) sequential arrival of information revealed by click-throughs, and (3) nonnegligible search cost. Our approach allows us to jointly estimate consumers’ heterogeneous preferences and search costs under the interplay of social media and search engines, and to predict search and purchase behavior for each consumer. We validate the model using an individual session-level data set of approximately seven million observations resulting in room bookings in 2,117 U.S. hotels. Interestingly, our analysis allows us to quantify the trade-off between consumers’ benefits and cognitive costs from using large-scale unstructured social media information during decision making. Our policy experiments show that providing a carefully curated digest of social media content during the earlier stages of consumer search (i.e., on the search results summary page) can lead to a 12.01% increase in the overall search engine revenue.

Suggested Citation

  • Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2019. "Modeling Consumer Footprints on Search Engines: An Interplay with Social Media," Management Science, INFORMS, vol. 65(3), pages 1363-1385, March.
  • Handle: RePEc:inm:ormnsc:v:65:y:2019:i:3:p:1363-1385
    DOI: 10.1287/mnsc.2017.2991
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/mnsc.2017.2991
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2017.2991?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuxin Chen & Song Yao, 2017. "Sequential Search with Refinement: Model and Application with Click-Stream Data," Management Science, INFORMS, vol. 63(12), pages 4345-4365, December.
    2. Sergei Koulayev, 2013. "Search With Dirichlet Priors: Estimation and Implications for Consumer Demand," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 226-239, April.
    3. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    4. Matthijs R. Wildenbeest, 2011. "An empirical model of search with vertically differentiated products," RAND Journal of Economics, RAND Corporation, vol. 42(4), pages 729-757, December.
    5. Jacoby, Jacob & Speller, Donald E & Berning, Carol A Kohn, 1974. "Brand Choice Behavior as a Function of Information Load: Replication and Extension," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 1(1), pages 33-42, June.
    6. Jun B. Kim & Paulo Albuquerque & Bart J. Bronnenberg, 2010. "Online Demand Under Limited Consumer Search," Marketing Science, INFORMS, vol. 29(6), pages 1001-1023, 11-12.
    7. Babur De los Santos & Sergei Koulayev, 2017. "Optimizing Click-Through in Online Rankings with Endogenous Search Refinement," Marketing Science, INFORMS, vol. 36(4), pages 542-564, July.
    8. Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2011. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Management Science, INFORMS, vol. 57(8), pages 1485-1509, August.
    9. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2014. "Examining the Impact of Ranking on Consumer Behavior and Search Engine Revenue," Management Science, INFORMS, vol. 60(7), pages 1632-1654, July.
    10. Elisabeth Honka, 2014. "Quantifying search and switching costs in the US auto insurance industry," RAND Journal of Economics, RAND Corporation, vol. 45(4), pages 847-884, December.
    11. Lee, Lung-Fei, 1983. "Generalized Econometric Models with Selectivity," Econometrica, Econometric Society, vol. 51(2), pages 507-512, March.
    12. David Godes & Dina Mayzlin, 2004. "Using Online Conversations to Study Word-of-Mouth Communication," Marketing Science, INFORMS, vol. 23(4), pages 545-560, June.
    13. Michael Rothschild, 1974. "Searching for the Lowest Price When the Distribution of Prices Is Unknown: A Summary," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 1, pages 293-294, National Bureau of Economic Research, Inc.
    14. Il-Horn Hann & Christian Terwiesch, 2003. "Measuring the Frictional Costs of Online Transactions: The Case of a Name-Your-Own-Price Channel," Management Science, INFORMS, vol. 49(11), pages 1563-1579, November.
    15. Pei-Yu Chen & Yili Hong & Ying Liu, 2018. "The Value of Multidimensional Rating Systems: Evidence from a Natural Experiment and Randomized Experiments," Management Science, INFORMS, vol. 64(10), pages 4629-4647, October.
    16. Song Yao & Carl F. Mela, 2011. "A Dynamic Model of Sponsored Search Advertising," Marketing Science, INFORMS, vol. 30(3), pages 447-468, 05-06.
    17. Babur De Los Santos & Ali Hortacsu & Matthijs R. Wildenbeest, 2012. "Testing Models of Consumer Search Using Data on Web Browsing and Purchasing Behavior," American Economic Review, American Economic Association, vol. 102(6), pages 2955-2980, October.
    18. Reinganum, Jennifer F, 1982. "Strategic Search Theory," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 23(1), pages 1-17, February.
    19. Weitzman, Martin L, 1979. "Optimal Search for the Best Alternative," Econometrica, Econometric Society, vol. 47(3), pages 641-654, May.
    20. De los Santos, Babur, 2018. "Consumer search on the Internet," International Journal of Industrial Organization, Elsevier, vol. 58(C), pages 66-105.
    21. Rothschild, Michael, 1974. "Searching for the Lowest Price When the Distribution of Prices Is Unknown," Journal of Political Economy, University of Chicago Press, vol. 82(4), pages 689-711, July/Aug..
    22. Michael R. Baye & J. Rupert J. Gatti & Paul Kattuman & John Morgan, 2009. "Clicks, Discontinuities, and Firm Demand Online," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 18(4), pages 935-975, December.
    23. Stigler, George J., 2011. "Economics of Information," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 5, pages 35-49.
    24. Ali Hortaçsu & Chad Syverson, 2004. "Product Differentiation, Search Costs, and Competition in the Mutual Fund Industry: A Case Study of S&P 500 Index Funds," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(2), pages 403-456.
    25. Sergei Koulayev, 2014. "Search for differentiated products: identification and estimation," RAND Journal of Economics, RAND Corporation, vol. 45(3), pages 553-575, September.
    26. Nitin Mehta & Surendra Rajiv & Kannan Srinivasan, 2003. "Price Uncertainty and Consumer Search: A Structural Model of Consideration Set Formation," Marketing Science, INFORMS, vol. 22(1), pages 58-84, June.
    27. Bikhchandani, Sushil & Sharma, Sunil, 1996. "Optimal search with learning," Journal of Economic Dynamics and Control, Elsevier, vol. 20(1-3), pages 333-359.
    28. Glenn Ellison & Sara Fisher Ellison, 2009. "Search, Obfuscation, and Price Elasticities on the Internet," Econometrica, Econometric Society, vol. 77(2), pages 427-452, March.
    29. Chris Forman & Anindya Ghose & Batia Wiesenfeld, 2008. "Examining the Relationship Between Reviews and Sales: The Role of Reviewer Identity Disclosure in Electronic Markets," Information Systems Research, INFORMS, vol. 19(3), pages 291-313, September.
    30. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2012. "Designing Ranking Systems for Hotels on Travel Search Engines by Mining User-Generated and Crowdsourced Content," Marketing Science, INFORMS, vol. 31(3), pages 493-520, May.
    31. Moraga-González, José Luis & Wildenbeest, Matthijs R., 2008. "Maximum likelihood estimation of search costs," European Economic Review, Elsevier, vol. 52(5), pages 820-848, July.
    32. Oded Netzer & Ronen Feldman & Jacob Goldenberg & Moshe Fresko, 2012. "Mine Your Own Business: Market-Structure Surveillance Through Text Mining," Marketing Science, INFORMS, vol. 31(3), pages 521-543, May.
    33. Rosenfield, Donald B. & Shapiro, Roy D., 1981. "Optimal adaptive price search," Journal of Economic Theory, Elsevier, vol. 25(1), pages 1-20, August.
    34. Erik Brynjolfsson & Astrid Dick & Michael Smith, 2010. "A nearly perfect market?," Quantitative Marketing and Economics (QME), Springer, vol. 8(1), pages 1-33, March.
    35. Avi Goldfarb & Catherine Tucker, 2011. "Search Engine Advertising: Channel Substitution When Pricing Ads to Context," Management Science, INFORMS, vol. 57(3), pages 458-470, March.
    36. Mortensen, Dale T, 1970. "Job Search, the Duration of Unemployment, and the Phillips Curve," American Economic Review, American Economic Association, vol. 60(5), pages 847-862, December.
    37. Anindya Ghose & Sha Yang, 2009. "An Empirical Analysis of Search Engine Advertising: Sponsored Search in Electronic Markets," Management Science, INFORMS, vol. 55(10), pages 1605-1622, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karle, Heiko & Schumacher, Heiner & Vølund, Rune, 2023. "Consumer loss aversion and scale-dependent psychological switching costs," Games and Economic Behavior, Elsevier, vol. 138(C), pages 214-237.
    2. Yi Yang & Kunpeng Zhang & Yangyang Fan, 2023. "sDTM: A Supervised Bayesian Deep Topic Model for Text Analytics," Information Systems Research, INFORMS, vol. 34(1), pages 137-156, March.
    3. Jin P. Gerlach & Ronald T. Cenfetelli, 2022. "Overcoming the Single-IS Paradigm in Individual-Level IS Research," Information Systems Research, INFORMS, vol. 33(2), pages 476-488, June.
    4. Xitong Li & Jörn Grahl & Oliver Hinz, 2022. "How Do Recommender Systems Lead to Consumer Purchases? A Causal Mediation Analysis of a Field Experiment," Information Systems Research, INFORMS, vol. 33(2), pages 620-637, June.
    5. Zaiyan Wei & Mo Xiao & Rong Rong, 2021. "Network Size and Content Generation on Social Media Platforms," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1406-1426, May.
    6. Lijia Ma & Xingchen Xu & Yong Tan, 2024. "Crafting Knowledge: Exploring the Creative Mechanisms of Chat-Based Search Engines," Papers 2402.19421, arXiv.org.
    7. Choi, Tsan-Ming & Guo, Shu & Luo, Suyuan, 2020. "When blockchain meets social-media: Will the result benefit social media analytics for supply chain operations management?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
    8. Gibbard, Peter, 2023. "Search with two stages of information acquisition: A structural econometric model of online purchases," Information Economics and Policy, Elsevier, vol. 65(C).
    9. Alantari, Huwail J. & Currim, Imran S. & Deng, Yiting & Singh, Sameer, 2022. "An empirical comparison of machine learning methods for text-based sentiment analysis of online consumer reviews," International Journal of Research in Marketing, Elsevier, vol. 39(1), pages 1-19.
    10. Raluca M. Ursu & Qingliang Wang & Pradeep K. Chintagunta, 2020. "Search Duration," Marketing Science, INFORMS, vol. 39(5), pages 849-871, September.
    11. Wei Zhou & Zidong Wang, 2020. "Competing for Search Traffic in Query Markets: Entry Strategy, Platform Design, and Entrepreneurship," Working Papers 20-12, NET Institute.
    12. Aishwarya Deep Shukla & Guodong (Gordon) Gao & Ritu Agarwal, 2021. "How Digital Word-of-Mouth Affects Consumer Decision Making: Evidence from Doctor Appointment Booking," Management Science, INFORMS, vol. 67(3), pages 1546-1568, March.
    13. Martin Reisenbichler & Thomas Reutterer & David A. Schweidel & Daniel Dan, 2022. "Frontiers: Supporting Content Marketing with Natural Language Generation," Marketing Science, INFORMS, vol. 41(3), pages 441-452, May.
    14. Venkatesh Shankar & Sohil Parsana, 2022. "An overview and empirical comparison of natural language processing (NLP) models and an introduction to and empirical application of autoencoder models in marketing," Journal of the Academy of Marketing Science, Springer, vol. 50(6), pages 1324-1350, November.
    15. Peter Gibbard, 2022. "A Model of Search with Two Stages of Information Acquisition and Additive Learning," Management Science, INFORMS, vol. 68(2), pages 1212-1217, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raluca M. Ursu & Qingliang Wang & Pradeep K. Chintagunta, 2020. "Search Duration," Marketing Science, INFORMS, vol. 39(5), pages 849-871, September.
    2. Rafael P. Greminger, 2022. "Optimal Search and Discovery," Management Science, INFORMS, vol. 68(5), pages 3904-3924, May.
    3. Xing Zhang & Tat Y. Chan & Ying Xie, 2018. "Price Search and Periodic Price Discounts," Management Science, INFORMS, vol. 64(2), pages 495-510, February.
    4. Yuxin Chen & Song Yao, 2017. "Sequential Search with Refinement: Model and Application with Click-Stream Data," Management Science, INFORMS, vol. 63(12), pages 4345-4365, December.
    5. Bart J. Bronnenberg & Jun B. Kim & Carl F. Mela, 2016. "Zooming In on Choice: How Do Consumers Search for Cameras Online?," Marketing Science, INFORMS, vol. 35(5), pages 693-712, September.
    6. Babur De los Santos & Ali Hortacsu & Matthijs R. Wildenbeest, 2012. "Search with Learning," Working Papers 2012-03, Indiana University, Kelley School of Business, Department of Business Economics and Public Policy.
    7. Raluca M. Ursu, 2018. "The Power of Rankings: Quantifying the Effect of Rankings on Online Consumer Search and Purchase Decisions," Marketing Science, INFORMS, vol. 37(4), pages 530-552, August.
    8. Hana Choi & Carl F. Mela, 2019. "Monetizing Online Marketplaces," Marketing Science, INFORMS, vol. 38(6), pages 948-972, November.
    9. De los Santos, Babur, 2018. "Consumer search on the Internet," International Journal of Industrial Organization, Elsevier, vol. 58(C), pages 66-105.
    10. Anocha Aribarg & Thomas Otter & Daniel Zantedeschi & Greg M. Allenby & Taylor Bentley & David J. Curry & Marc Dotson & Ty Henderson & Elisabeth Honka & Rajeev Kohli & Kamel Jedidi & Stephan Seiler & X, 2018. "Advancing Non-compensatory Choice Models in Marketing," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(1), pages 82-92, March.
    11. Elisabeth Honka & Pradeep Chintagunta, 2017. "Simultaneous or Sequential? Search Strategies in the U.S. Auto Insurance Industry," Marketing Science, INFORMS, vol. 36(1), pages 21-42, January.
    12. Honka, Elisabeth & Seiler, Stephan & Ursu, Raluca, 2024. "Consumer search: What can we learn from pre-purchase data?," Journal of Retailing, Elsevier, vol. 100(1), pages 114-129.
    13. Choudhary, Vidyanand & Currim, Imran & Dewan, Sanjeev & Jeliazkov, Ivan & Mintz, Ofer & Turner, John, 2017. "Evaluation Set Size and Purchase: Evidence from a Product Search Engine," Journal of Interactive Marketing, Elsevier, vol. 37(C), pages 16-31.
    14. Raluca M. Ursu & Qianyun Zhang & Elisabeth Honka, 2023. "Search Gaps and Consumer Fatigue," Marketing Science, INFORMS, vol. 42(1), pages 110-136, January.
    15. Mantian (Mandy) Hu & Chu (Ivy) Dang & Pradeep K. Chintagunta, 2019. "Search and Learning at a Daily Deals Website," Marketing Science, INFORMS, vol. 38(4), pages 609-642, July.
    16. Bronnenberg, Bart & Dube, Jean-Pierre, 2016. "The Formation of Consumer Brand Preferences," CEPR Discussion Papers 11648, C.E.P.R. Discussion Papers.
    17. Greminger, Rafael, 2019. "Optimal Search and Awareness Expansion," Other publications TiSEM ac47e6ff-42a4-4d70-addd-6, Tilburg University, School of Economics and Management.
    18. Bart J. Bronnenberg & Jean-Pierre H. Dubé, 2016. "The Formation of Consumer Brand Preferences," NBER Working Papers 22691, National Bureau of Economic Research, Inc.
    19. Timothy J. Richards & Stephen F. Hamilton & Koichi Yonezawa, 2017. "Variety and the Cost of Search in Supermarket Retailing," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 50(3), pages 263-285, May.
    20. Rafael P. Greminger, 2019. "Optimal Search and Discovery," Papers 1911.07773, arXiv.org, revised Feb 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:65:y:2019:i:3:p:1363-1385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.