IDEAS home Printed from https://ideas.repec.org/a/inm/orisre/v28y2017i1p159-179.html
   My bibliography  Save this article

Coalition-Based Pricing in Ascending Combinatorial Auctions

Author

Listed:
  • Martin Bichler

    (Department of Informatics, Technical University of Munich, D-85748 Garching, Germany)

  • Zhen Hao

    (Department of Informatics, Technical University of Munich, D-85748 Garching, Germany)

  • Gediminas Adomavicius

    (Carlson School of Management, University of Minnesota, Minneapolis, Minnesota 55455)

Abstract

Bidders in larger ascending combinatorial auctions face a substantial coordination problem, which has received little attention in the literature. The coordination problem manifests itself by the fact that losing bidders need to submit nonoverlapping package bids that are high enough to outbid the standing winners. We propose an auction format, which leverages the information that the auctioneer collects throughout the auction about the preferences of individual bidders and suggests prices for the members of losing bidder coalitions, which in total would make a given coalition winning. We model the bidder’s bundle selection problem as a coordination game, which provides a theoretical rationale for bidders to agree to these prices, and highlights the role of the auctioneer in providing relevant information feedback. Results of extensive numerical simulations and experiments with human participants demonstrate that this type of pricing substantially reduces the number of auction rounds and bids necessary to find a competitive equilibrium, and at the same time significantly increases auction efficiency in the lab. This rapid convergence is crucial for the practical viability of combinatorial auctions in larger markets.

Suggested Citation

  • Martin Bichler & Zhen Hao & Gediminas Adomavicius, 2017. "Coalition-Based Pricing in Ascending Combinatorial Auctions," Information Systems Research, INFORMS, vol. 28(1), pages 159-179, March.
  • Handle: RePEc:inm:orisre:v:28:y:2017:i:1:p:159-179
    DOI: 10.1287/isre.2016.0681
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/isre.2016.0681
    Download Restriction: no

    File URL: https://libkey.io/10.1287/isre.2016.0681?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin Bichler & Alok Gupta & Wolfgang Ketter, 2010. "Research Commentary ---Designing Smart Markets," Information Systems Research, INFORMS, vol. 21(4), pages 688-699, December.
    2. Anthony M. Kwasnica & John O. Ledyard & Dave Porter & Christine DeMartini, 2005. "A New and Improved Design for Multiobject Iterative Auctions," Management Science, INFORMS, vol. 51(3), pages 419-434, March.
    3. B. Douglas Bernheim & Michael D. Whinston, 1986. "Menu Auctions, Resource Allocation, and Economic Influence," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 101(1), pages 1-31.
    4. Aumann, Robert J, 1987. "Correlated Equilibrium as an Expression of Bayesian Rationality," Econometrica, Econometric Society, vol. 55(1), pages 1-18, January.
    5. Ioannis Petrakis & Georg Ziegler & Martin Bichler, 2013. "Ascending Combinatorial Auctions with Allocation Constraints: On Game Theoretical and Computational Properties of Generic Pricing Rules," Information Systems Research, INFORMS, vol. 24(3), pages 768-786, September.
    6. Gediminas Adomavicius & Alok Gupta, 2005. "Toward Comprehensive Real-Time Bidder Support in Iterative Combinatorial Auctions," Information Systems Research, INFORMS, vol. 16(2), pages 169-185, June.
    7. Kemal Guler & Martin Bichler & Ioannis Petrakis, 2016. "Ascending Combinatorial Auctions with Risk Averse Bidders," Group Decision and Negotiation, Springer, vol. 25(3), pages 609-639, May.
    8. Robert Day & Paul Milgrom, 2008. "Core-selecting package auctions," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(3), pages 393-407, March.
    9. , K. & ,, 2016. "On the impossibility of core-selecting auctions," Theoretical Economics, Econometric Society, vol. 11(1), January.
    10. Schneider, S. & Shabalin, P. & Bichler, M., 2010. "On the robustness of non-linear personalized price combinatorial auctions," European Journal of Operational Research, Elsevier, vol. 206(1), pages 248-259, October.
    11. Peter Cramton & Yoav Shoham & Richard Steinberg (ed.), 2006. "Combinatorial Auctions," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262033429, April.
    12. Tobias Scheffel & Alexander Pikovsky & Martin Bichler & Kemal Guler, 2011. "An Experimental Comparison of Linear and Nonlinear Price Combinatorial Auctions," Information Systems Research, INFORMS, vol. 22(2), pages 346-368, June.
    13. Martin Bichler & Pasha Shabalin & Jürgen Wolf, 2013. "Do core-selecting Combinatorial Clock Auctions always lead to high efficiency? An experimental analysis of spectrum auction designs," Experimental Economics, Springer;Economic Science Association, vol. 16(4), pages 511-545, December.
    14. de Vries, Sven & Schummer, James & Vohra, Rakesh V., 2007. "On ascending Vickrey auctions for heterogeneous objects," Journal of Economic Theory, Elsevier, vol. 132(1), pages 95-118, January.
    15. McLennan, Andrew & Berg, Johannes, 2005. "Asymptotic expected number of Nash equilibria of two-player normal form games," Games and Economic Behavior, Elsevier, vol. 51(2), pages 264-295, May.
    16. Andrew McLennan, 2005. "The Expected Number of Nash Equilibria of a Normal Form Game," Econometrica, Econometric Society, vol. 73(1), pages 141-174, January.
    17. Bikhchandani, Sushil & Ostroy, Joseph M., 2002. "The Package Assignment Model," Journal of Economic Theory, Elsevier, vol. 107(2), pages 377-406, December.
    18. Sano, Ryuji, 2012. "Non-bidding equilibrium in an ascending core-selecting auction," Games and Economic Behavior, Elsevier, vol. 74(2), pages 637-650.
    19. Lehmann, Benny & Lehmann, Daniel & Nisan, Noam, 2006. "Combinatorial auctions with decreasing marginal utilities," Games and Economic Behavior, Elsevier, vol. 55(2), pages 270-296, May.
    20. Tobias Scheffel & Georg Ziegler & Martin Bichler, 2012. "On the impact of package selection in combinatorial auctions: an experimental study in the context of spectrum auction design," Experimental Economics, Springer;Economic Science Association, vol. 15(4), pages 667-692, December.
    21. Lawrence M. Ausubel, 2006. "An Efficient Dynamic Auction for Heterogeneous Commodities," American Economic Review, American Economic Association, vol. 96(3), pages 602-629, June.
    22. Goeree, Jacob K. & Holt, Charles A., 2010. "Hierarchical package bidding: A paper & pencil combinatorial auction," Games and Economic Behavior, Elsevier, vol. 70(1), pages 146-169, September.
    23. Nisan, Noam & Segal, Ilya, 2006. "The communication requirements of efficient allocations and supporting prices," Journal of Economic Theory, Elsevier, vol. 129(1), pages 192-224, July.
    24. Jonathan Levin & Andrzej Skrzypacz, 2016. "Properties of the Combinatorial Clock Auction," American Economic Review, American Economic Association, vol. 106(9), pages 2528-2551, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bichler, Martin & Grimm, Veronika & Kretschmer, Sandra & Sutterer, Paul, 2020. "Market design for renewable energy auctions: An analysis of alternative auction formats," Energy Economics, Elsevier, vol. 92(C).
    2. Fugger, Nicolas & Gillen, Philippe & Rasch, Alexander & Zeppenfeld, Christopher, 2016. "Preferences and Decision Support in Competitive Bidding," VfS Annual Conference 2016 (Augsburg): Demographic Change 145849, Verein für Socialpolitik / German Economic Association.
    3. De Liu & Adib Bagh, 2020. "Preserving Bidder Privacy in Assignment Auctions: Design and Measurement," Management Science, INFORMS, vol. 66(7), pages 3162-3182, July.
    4. Bart Vangerven & Dries R. Goossens & Frits C. R. Spieksma, 2021. "Using Feedback to Mitigate Coordination and Threshold Problems in Iterative Combinatorial Auctions," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(2), pages 113-127, April.
    5. Kazumori, Eiichiro & Belch, Yaakov, 2019. "t-Tree: The Tokyo toolbox for large-scale combinatorial auction experiments," Journal of Behavioral and Experimental Finance, Elsevier, vol. 24(C).
    6. Martin Bichler & Alexander Hammerl & Thayer Morrill & Stefan Waldherr, 2021. "How to Assign Scarce Resources Without Money: Designing Information Systems that are Efficient, Truthful, and (Pretty) Fair," Information Systems Research, INFORMS, vol. 32(2), pages 335-355, June.
    7. Gediminas Adomavicius & Shawn P. Curley & Alok Gupta & Pallab Sanyal, 2020. "How Decision Complexity Affects Outcomes in Combinatorial Auctions," Production and Operations Management, Production and Operations Management Society, vol. 29(11), pages 2579-2600, November.
    8. Martin Bichler & Paul Milgrom & Gregor Schwarz, 2023. "Taming the Communication and Computation Complexity of Combinatorial Auctions: The FUEL Bid Language," Management Science, INFORMS, vol. 69(4), pages 2217-2238, April.
    9. Gediminas Adomavicius & Alok Gupta & Mochen Yang, 2022. "Bidder Support in Multi-item Multi-unit Continuous Combinatorial Auctions: A Unifying Theoretical Framework," Information Systems Research, INFORMS, vol. 33(4), pages 1174-1195, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pallab Sanyal, 2016. "Characteristics and Economic Consequences of Jump Bids in Combinatorial Auctions," Information Systems Research, INFORMS, vol. 27(2), pages 347-364, June.
    2. Ioannis Petrakis & Georg Ziegler & Martin Bichler, 2013. "Ascending Combinatorial Auctions with Allocation Constraints: On Game Theoretical and Computational Properties of Generic Pricing Rules," Information Systems Research, INFORMS, vol. 24(3), pages 768-786, September.
    3. Martin Bichler & Pasha Shabalin & Georg Ziegler, 2013. "Efficiency with Linear Prices? A Game-Theoretical and Computational Analysis of the Combinatorial Clock Auction," Information Systems Research, INFORMS, vol. 24(2), pages 394-417, June.
    4. Andor Goetzendorff & Martin Bichler & Pasha Shabalin & Robert W. Day, 2015. "Compact Bid Languages and Core Pricing in Large Multi-item Auctions," Management Science, INFORMS, vol. 61(7), pages 1684-1703, July.
    5. Kemal Guler & Martin Bichler & Ioannis Petrakis, 2016. "Ascending Combinatorial Auctions with Risk Averse Bidders," Group Decision and Negotiation, Springer, vol. 25(3), pages 609-639, May.
    6. De Liu & Adib Bagh, 2020. "Preserving Bidder Privacy in Assignment Auctions: Design and Measurement," Management Science, INFORMS, vol. 66(7), pages 3162-3182, July.
    7. Gediminas Adomavicius & Alok Gupta & Mochen Yang, 2022. "Bidder Support in Multi-item Multi-unit Continuous Combinatorial Auctions: A Unifying Theoretical Framework," Information Systems Research, INFORMS, vol. 33(4), pages 1174-1195, December.
    8. Bart Vangerven & Dries R. Goossens & Frits C. R. Spieksma, 2021. "Using Feedback to Mitigate Coordination and Threshold Problems in Iterative Combinatorial Auctions," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(2), pages 113-127, April.
    9. Scott Duke Kominers & Alexander Teytelboym & Vincent P Crawford, 2017. "An invitation to market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 541-571.
    10. Shirata, Yasuhiro, 2017. "First price package auction with many traders," Journal of Mathematical Economics, Elsevier, vol. 69(C), pages 71-83.
    11. Heczko, Alexander & Kittsteiner, Thomas & Ott, Marion, 2018. "The Performance of Core-Selecting Auctions: An Experiment," EconStor Preprints 176842, ZBW - Leibniz Information Centre for Economics.
    12. Martin Bichler & Paul Milgrom & Gregor Schwarz, 2023. "Taming the Communication and Computation Complexity of Combinatorial Auctions: The FUEL Bid Language," Management Science, INFORMS, vol. 69(4), pages 2217-2238, April.
    13. Chernomaz, Kirill & Levin, Dan, 2012. "Efficiency and synergy in a multi-unit auction with and without package bidding: An experimental study," Games and Economic Behavior, Elsevier, vol. 76(2), pages 611-635.
    14. Ozan Candogan & Asuman Ozdaglar & Pablo A. Parrilo, 2015. "Iterative Auction Design for Tree Valuations," Operations Research, INFORMS, vol. 63(4), pages 751-771, August.
    15. Kaplan, Todd R. & Zamir, Shmuel, 2015. "Advances in Auctions," Handbook of Game Theory with Economic Applications,, Elsevier.
    16. Jawad Abrache & Teodor Crainic & Michel Gendreau & Monia Rekik, 2007. "Combinatorial auctions," Annals of Operations Research, Springer, vol. 153(1), pages 131-164, September.
    17. Thomas Kittsteiner & Marion Ott & Richard Steinberg, 2022. "Competing Combinatorial Auctions," Information Systems Research, INFORMS, vol. 33(4), pages 1130-1137, December.
    18. Martin Bichler & Pasha Shabalin & Alexander Pikovsky, 2009. "A Computational Analysis of Linear Price Iterative Combinatorial Auction Formats," Information Systems Research, INFORMS, vol. 20(1), pages 33-59, March.
    19. Baranov, Oleg, 2018. "An efficient ascending auction for private valuations," Journal of Economic Theory, Elsevier, vol. 177(C), pages 495-517.
    20. Lamprirni Zarpala & Dimitris Voliotis, 2022. "A core-selecting auction for portfolio's packages," Papers 2206.11516, arXiv.org, revised Feb 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orisre:v:28:y:2017:i:1:p:159-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.