IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v69y2021i2p613-631.html
   My bibliography  Save this article

Fast Algorithms for Rank-1 Bimatrix Games

Author

Listed:
  • Bharat Adsul

    (Department of Computer Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India;)

  • Jugal Garg

    (Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801;)

  • Ruta Mehta

    (Department of Computer Science, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801;)

  • Milind Sohoni

    (Department of Computer Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India;)

  • Bernhard von Stengel

    (Department of Mathematics, London School of Economics, London WC2A 2AE, United Kingdom)

Abstract

The rank of a bimatrix game is the matrix rank of the sum of the two payoff matrices. This paper comprehensively analyzes games of rank one and shows the following: (1) For a game of rank r , the set of its Nash equilibria is the intersection of a generically one-dimensional set of equilibria of parameterized games of rank r − 1 with a hyperplane. (2) One equilibrium of a rank-1 game can be found in polynomial time. (3) All equilibria of a rank-1 game can be found by following a piecewise linear path. In contrast, such a path-following method finds only one equilibrium of a bimatrix game. (4) The number of equilibria of a rank-1 game may be exponential. (5) There is a homeomorphism between the space of bimatrix games and their equilibrium correspondence that preserves rank. It is a variation of the homeomorphism used for the concept of strategic stability of an equilibrium component.

Suggested Citation

  • Bharat Adsul & Jugal Garg & Ruta Mehta & Milind Sohoni & Bernhard von Stengel, 2021. "Fast Algorithms for Rank-1 Bimatrix Games," Operations Research, INFORMS, vol. 69(2), pages 613-631, March.
  • Handle: RePEc:inm:oropre:v:69:y:2021:i:2:p:613-631
    DOI: 10.1287/opre.2020.1981
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2020.1981
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2020.1981?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeremy Bulow & Jonathan Levin, 2006. "Matching and Price Competition," American Economic Review, American Economic Association, vol. 96(3), pages 652-668, June.
    2. Wilson, Robert, 1992. "Computing Simply Stable Equilibria," Econometrica, Econometric Society, vol. 60(5), pages 1039-1070, September.
    3. Bernhard von Stengel & Antoon van den Elzen & Dolf Talman, 2002. "Computing Normal Form Perfect Equilibria for Extensive Two-Person Games," Econometrica, Econometric Society, vol. 70(2), pages 693-715, March.
    4. R.J. Aumann & S. Hart (ed.), 2002. "Handbook of Game Theory with Economic Applications," Handbook of Game Theory with Economic Applications, Elsevier, edition 1, volume 3, number 3.
    5. C. E. Lemke, 1965. "Bimatrix Equilibrium Points and Mathematical Programming," Management Science, INFORMS, vol. 11(7), pages 681-689, May.
    6. Saul Gass & Thomas Saaty, 1955. "The computational algorithm for the parametric objective function," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 39-45, March.
    7. Von Stengel, Bernhard, 2002. "Computing equilibria for two-person games," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 45, pages 1723-1759, Elsevier.
    8. Gilboa, Itzhak & Zemel, Eitan, 1989. "Nash and correlated equilibria: Some complexity considerations," Games and Economic Behavior, Elsevier, vol. 1(1), pages 80-93, March.
    9. Rahul Savani & Bernhard Stengel, 2006. "Hard-to-Solve Bimatrix Games," Econometrica, Econometric Society, vol. 74(2), pages 397-429, March.
    10. Ravi Kannan & Thorsten Theobald, 2010. "Games of fixed rank: a hierarchy of bimatrix games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 157-173, January.
    11. Freund, Robert Michael. & Roundy, Robin. & Todd, Michael J., 1947-, 1985. "Identifying the set of always-active constraints in a system of linear inequalities by a single linear program," Working papers 1674-85., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    12. Govindan, Srihari & Wilson, Robert, 2003. "A global Newton method to compute Nash equilibria," Journal of Economic Theory, Elsevier, vol. 110(1), pages 65-86, May.
    13. David Avis & Gabriel Rosenberg & Rahul Savani & Bernhard Stengel, 2010. "Enumeration of Nash equilibria for two-player games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 9-37, January.
    14. Mathijs Jansen & Dries Vermeulen, 2001. "On the computation of stable sets and strictly perfect equilibria," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 17(2), pages 325-344.
    15. Jansen, B. & de Jong, J. J. & Roos, C. & Terlaky, T., 1997. "Sensitivity analysis in linear programming: just be careful!," European Journal of Operational Research, Elsevier, vol. 101(1), pages 15-28, August.
    16. Kohlberg, Elon & Mertens, Jean-Francois, 1986. "On the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 54(5), pages 1003-1037, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahul Savani & Bernhard Stengel, 2015. "Game Theory Explorer: software for the applied game theorist," Computational Management Science, Springer, vol. 12(1), pages 5-33, January.
    2. P. Herings & Ronald Peeters, 2010. "Homotopy methods to compute equilibria in game theory," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 119-156, January.
    3. Bernhard von Stengel & Antoon van den Elzen & Dolf Talman, 2002. "Computing Normal Form Perfect Equilibria for Extensive Two-Person Games," Econometrica, Econometric Society, vol. 70(2), pages 693-715, March.
    4. Porter, Ryan & Nudelman, Eugene & Shoham, Yoav, 2008. "Simple search methods for finding a Nash equilibrium," Games and Economic Behavior, Elsevier, vol. 63(2), pages 642-662, July.
    5. Yin Chen & Chuangyin Dang, 2019. "A Reformulation-Based Simplicial Homotopy Method for Approximating Perfect Equilibria," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 877-891, October.
    6. Rahul Savani & Bernhard von Stengel, 2016. "Unit vector games," International Journal of Economic Theory, The International Society for Economic Theory, vol. 12(1), pages 7-27, March.
    7. Govindan, Srihari & Wilson, Robert, 2004. "Computing Nash equilibria by iterated polymatrix approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1229-1241, April.
    8. Bernhard Stengel, 2010. "Computation of Nash equilibria in finite games: introduction to the symposium," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 1-7, January.
    9. Cao, Yiyin & Dang, Chuangyin & Xiao, Zhongdong, 2022. "A differentiable path-following method to compute subgame perfect equilibria in stationary strategies in robust stochastic games and its applications," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1032-1050.
    10. Conitzer, Vincent & Sandholm, Tuomas, 2008. "New complexity results about Nash equilibria," Games and Economic Behavior, Elsevier, vol. 63(2), pages 621-641, July.
    11. F. Forges & B. von Stengel, 2002. "Computionally Efficient Coordination in Games Trees," THEMA Working Papers 2002-05, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    12. Cao, Yiyin & Dang, Chuangyin, 2022. "A variant of Harsanyi's tracing procedures to select a perfect equilibrium in normal form games," Games and Economic Behavior, Elsevier, vol. 134(C), pages 127-150.
    13. Hausken, Kjell, 2008. "Strategic defense and attack for reliability systems," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1740-1750.
    14. Yiyin Cao & Yin Chen & Chuangyin Dang, 2024. "A Variant of the Logistic Quantal Response Equilibrium to Select a Perfect Equilibrium," Journal of Optimization Theory and Applications, Springer, vol. 201(3), pages 1026-1062, June.
    15. Yiyin Cao & Chuangyin Dang & Yabin Sun, 2022. "Complementarity Enhanced Nash’s Mappings and Differentiable Homotopy Methods to Select Perfect Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 533-563, February.
    16. Yukio KORIYAMA & Matias Nunez, 2014. "Hybrid Procedures," THEMA Working Papers 2014-02, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    17. Huppmann, Daniel & Siddiqui, Sauleh, 2018. "An exact solution method for binary equilibrium problems with compensation and the power market uplift problem," European Journal of Operational Research, Elsevier, vol. 266(2), pages 622-638.
    18. McLennan, Andrew & Tourky, Rabee, 2010. "Imitation games and computation," Games and Economic Behavior, Elsevier, vol. 70(1), pages 4-11, September.
    19. Jugal Garg & Ruta Mehta & Vijay V. Vaziranic, 2018. "Substitution with Satiation: A New Class of Utility Functions and a Complementary Pivot Algorithm," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 996-1024, August.
    20. Etessami, Kousha, 2021. "The complexity of computing a (quasi-)perfect equilibrium for an n-player extensive form game," Games and Economic Behavior, Elsevier, vol. 125(C), pages 107-140.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:69:y:2021:i:2:p:613-631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.