IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v21y1997i1-2p148-160.html
   My bibliography  Save this article

On the Maximal Number of Nash Equilibria in ann x nBimatrix Game

Author

Listed:
  • Keiding, Hans

Abstract

No abstract is available for this item.

Suggested Citation

  • Keiding, Hans, 1997. "On the Maximal Number of Nash Equilibria in ann x nBimatrix Game," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 148-160, October.
  • Handle: RePEc:eee:gamebe:v:21:y:1997:i:1-2:p:148-160
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899-8256(97)90531-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas Quint & Martin Shubik, 1994. "On the Number of Nash Equilibria in a Bimatrix Game," Cowles Foundation Discussion Papers 1089, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Honda, 2018. "Games with the total bandwagon property meet the Quint–Shubik conjecture," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(3), pages 893-912, September.
    2. Ɖura-Georg Granić & Johannes Kern, 2016. "Circulant games," Theory and Decision, Springer, vol. 80(1), pages 43-69, January.
    3. C. Audet & S. Belhaiza & P. Hansen, 2006. "Enumeration of All the Extreme Equilibria in Game Theory: Bimatrix and Polymatrix Games," Journal of Optimization Theory and Applications, Springer, vol. 129(3), pages 349-372, June.
    4. Sun, Ching-jen, 2020. "A sandwich theorem for generic n × n two person games," Games and Economic Behavior, Elsevier, vol. 120(C), pages 86-95.
    5. McLennan, Andrew & Park, In-Uck, 1999. "Generic 4 x 4 Two Person Games Have at Most 15 Nash Equilibria," Games and Economic Behavior, Elsevier, vol. 26(1), pages 111-130, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bade, Sophie & Haeringer, Guillaume & Renou, Ludovic, 2007. "More strategies, more Nash equilibria," Journal of Economic Theory, Elsevier, vol. 135(1), pages 551-557, July.
    2. Thomas Quint & Martin Shubik & Dickey Yan, 1995. "Dumb Bugs and Bright Noncooperative Players: Games, Context and Behavior," Cowles Foundation Discussion Papers 1094, Cowles Foundation for Research in Economics, Yale University.
    3. McLennan, Andrew, 1997. "The Maximal Generic Number of Pure Nash Equilibria," Journal of Economic Theory, Elsevier, vol. 72(2), pages 408-410, February.
    4. Quint, Thomas & Shubik, Martin, 2002. "A bound on the number of Nash equilibria in a coordination game," Economics Letters, Elsevier, vol. 77(3), pages 323-327, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:21:y:1997:i:1-2:p:148-160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.