IDEAS home Printed from https://ideas.repec.org/a/eee/forpol/v80y2017icp80-98.html
   My bibliography  Save this article

Scenario analyses for the effects of harvesting intensity on development of forest resources, timber supply, carbon balance and biodiversity of Finnish forestry

Author

Listed:
  • Heinonen, Tero
  • Pukkala, Timo
  • Mehtätalo, Lauri
  • Asikainen, Antti
  • Kangas, Jyrki
  • Peltola, Heli

Abstract

We used national scenario analyses to examine the effects of harvesting intensity on the development of forest resources, timber supply, carbon balance, and biodiversity indicators of Finnish forestry in nine 10-year simulation periods (90-year simulation period) under the current climate. Data from the 11th National Forest Inventory of Finland were used to develop five even-flow harvesting scenarios for non-protected forests with the annual harvest ranging from 40 to 100millionm3. The results show that the highest annual even-flow harvest level, which did not decrease the growing stock volume over the 90-year simulation period, was 73millionm3. The total 90-year timber production, consisting of harvested volume and change in growing stock volume, was maximized when the annual harvest was 60millionm3. Volume increment increased for several decades when harvested volume was less than the current volume increment. The total carbon balance of forestry was the highest with low volume of harvested wood. Low harvested volume increased the values of biodiversity indicators, namely volume of deciduous trees, amount of deadwood and area of old forest.

Suggested Citation

  • Heinonen, Tero & Pukkala, Timo & Mehtätalo, Lauri & Asikainen, Antti & Kangas, Jyrki & Peltola, Heli, 2017. "Scenario analyses for the effects of harvesting intensity on development of forest resources, timber supply, carbon balance and biodiversity of Finnish forestry," Forest Policy and Economics, Elsevier, vol. 80(C), pages 80-98.
  • Handle: RePEc:eee:forpol:v:80:y:2017:i:c:p:80-98
    DOI: 10.1016/j.forpol.2017.03.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1389934116303823
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.forpol.2017.03.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lars Gamfeldt & Tord Snäll & Robert Bagchi & Micael Jonsson & Lena Gustafsson & Petter Kjellander & María C. Ruiz-Jaen & Mats Fröberg & Johan Stendahl & Christopher D. Philipson & Grzegorz Mikusiński , 2013. "Higher levels of multiple ecosystem services are found in forests with more tree species," Nature Communications, Nature, vol. 4(1), pages 1-8, June.
    2. Zubizarreta-Gerendiain, Ane & Pukkala, Timo & Peltola, Heli, 2016. "Effects of wood harvesting and utilisation policies on the carbon balance of forestry under changing climate: a Finnish case study," Forest Policy and Economics, Elsevier, vol. 62(C), pages 168-176.
    3. Pukkala, Timo, 2011. "Optimizing forest management in Finland with carbon subsidies and taxes," Forest Policy and Economics, Elsevier, vol. 13(6), pages 425-434, July.
    4. Tuomi, M. & Laiho, R. & Repo, A. & Liski, J., 2011. "Wood decomposition model for boreal forests," Ecological Modelling, Elsevier, vol. 222(3), pages 709-718.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eyvindson, Kyle & Repo, Anna & Mönkkönen, Mikko, 2018. "Mitigating forest biodiversity and ecosystem service losses in the era of bio-based economy," Forest Policy and Economics, Elsevier, vol. 92(C), pages 119-127.
    2. Valeria Ferreira Gregorio & Laia Pié & Antonio Terceño, 2018. "A Systematic Literature Review of Bio, Green and Circular Economy Trends in Publications in the Field of Economics and Business Management," Sustainability, MDPI, vol. 10(11), pages 1-39, November.
    3. Luhas, Jukka & Mikkilä, Mirja & Kylkilahti, Eliisa & Miettinen, Jenni & Malkamäki, Arttu & Pätäri, Satu & Korhonen, Jaana & Pekkanen, Tiia-Lotta & Tuppura, Anni & Lähtinen, Katja & Autio, Minna & Linn, 2021. "Pathways to a forest-based bioeconomy in 2060 within policy targets on climate change mitigation and biodiversity protection," Forest Policy and Economics, Elsevier, vol. 131(C).
    4. Zigmārs Rendenieks & Līga Liepa, 2023. "Three scenarios for tree species composition and stand age in new and permanent forest areas: A case study of Latvia," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 69(10), pages 438-450.
    5. Hurmekoski, Elias & Kunttu, Janni & Heinonen, Tero & Pukkala, Timo & Peltola, Heli, 2023. "Does expanding wood use in construction and textile markets contribute to climate change mitigation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    6. Elias Hurmekoski & Tanja Myllyviita & Jyri Seppälä & Tero Heinonen & Antti Kilpeläinen & Timo Pukkala & Tuomas Mattila & Lauri Hetemäki & Antti Asikainen & Heli Peltola, 2020. "Impact of structural changes in wood‐using industries on net carbon emissions in Finland," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 899-912, August.
    7. Zigmārs Rendenieks & Līga Liepa, . "Three scenarios for tree species composition and stand age in new and permanent forest areas: A case study of Latvia," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 0.
    8. Jan Banaś & Stanisław Zięba & Leszek Bujoczek, 2018. "An Example of Uneven-Aged Forest Management for Sustainable Timber Harvesting," Sustainability, MDPI, vol. 10(9), pages 1-13, September.
    9. Konsta Värri & Sanna Syri, 2019. "The Possible Role of Modular Nuclear Reactors in District Heating: Case Helsinki Region," Energies, MDPI, vol. 12(11), pages 1-24, June.
    10. Kai Liu & Yu Liang & Hong S. He & Wen J. Wang & Chao Huang & Shengwei Zong & Lei Wang & Jiangtao Xiao & Haibo Du, 2018. "Long-Term Impacts of China’s New Commercial Harvest Exclusion Policy on Ecosystem Services and Biodiversity in the Temperate Forests of Northeast China," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    11. Nabhani, Abbas & Mardaneh, Elham & Sjølie, Hanne K., 2024. "Multi-objective optimization of forest ecosystem services under uncertainty," Ecological Modelling, Elsevier, vol. 494(C).
    12. Sampo Soimakallio & Tuomo Kalliokoski & Aleksi Lehtonen & Olli Salminen, 2021. "On the trade-offs and synergies between forest carbon sequestration and substitution," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(1), pages 1-17, January.
    13. Parkatti, Vesa-Pekka & Suominen, Antti & Tahvonen, Olli & Malo, Pekka, 2024. "Assessing economic benefits and costs of carbon sinks in boreal rotation forestry," Forest Policy and Economics, Elsevier, vol. 166(C).
    14. Vauhkonen, Jari & Packalen, Tuula, 2018. "Uncertainties related to climate change and forest management with implications on climate regulation in Finland," Ecosystem Services, Elsevier, vol. 33(PB), pages 213-224.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elias Hurmekoski & Tanja Myllyviita & Jyri Seppälä & Tero Heinonen & Antti Kilpeläinen & Timo Pukkala & Tuomas Mattila & Lauri Hetemäki & Antti Asikainen & Heli Peltola, 2020. "Impact of structural changes in wood‐using industries on net carbon emissions in Finland," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 899-912, August.
    2. Sampo Soimakallio & Tuomo Kalliokoski & Aleksi Lehtonen & Olli Salminen, 2021. "On the trade-offs and synergies between forest carbon sequestration and substitution," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(1), pages 1-17, January.
    3. Hurmekoski, Elias & Kunttu, Janni & Heinonen, Tero & Pukkala, Timo & Peltola, Heli, 2023. "Does expanding wood use in construction and textile markets contribute to climate change mitigation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    4. Zubizarreta-Gerendiain, Ane & Pukkala, Timo & Peltola, Heli, 2016. "Effects of wood harvesting and utilisation policies on the carbon balance of forestry under changing climate: a Finnish case study," Forest Policy and Economics, Elsevier, vol. 62(C), pages 168-176.
    5. Eyvindson, Kyle & Duflot, Rémi & Triviño, María & Blattert, Clemens & Potterf, Mária & Mönkkönen, Mikko, 2021. "High boreal forest multifunctionality requires continuous cover forestry as a dominant management," Land Use Policy, Elsevier, vol. 100(C).
    6. Triviño, María & Juutinen, Artti & Mazziotta, Adriano & Miettinen, Kaisa & Podkopaev, Dmitry & Reunanen, Pasi & Mönkkönen, Mikko, 2015. "Managing a boreal forest landscape for providing timber, storing and sequestering carbon," Ecosystem Services, Elsevier, vol. 14(C), pages 179-189.
    7. Etienne Lorang & Antonello Lobianco & Philippe Delacote, 2023. "Increasing Paper and Cardboard Recycling: Impacts on the Forest Sector and Carbon Emissions," Post-Print hal-04690101, HAL.
    8. Innangi, Michele & Balestrieri, Rosario & Danise, Tiziana & d’Alessandro, Francesco & Fioretto, Antonietta, 2019. "From soil to bird community: A Partial Least Squares approach to investigate a natural wooded area surrounded by urban patchwork (Astroni crater, southern Italy)," Ecological Modelling, Elsevier, vol. 394(C), pages 1-10.
    9. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2013. "Sequester or substitute—Consequences of increased production of wood based energy on the carbon balance in Finland," Journal of Forest Economics, Elsevier, vol. 19(4), pages 402-415.
    10. Zanchi, Giuliana & Belyazid, Salim & Akselsson, Cecilia & Yu, Lin, 2014. "Modelling the effects of management intensification on multiple forest services: a Swedish case study," Ecological Modelling, Elsevier, vol. 284(C), pages 48-59.
    11. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2016. "Forests in the Finnish low carbon scenarios," Journal of Forest Economics, Elsevier, vol. 23(C), pages 45-62.
    12. Nguyen, Trung Thanh & Nghiem, Nhung, 2016. "Optimal forest rotation for carbon sequestration and biodiversity conservation by farm income levels," Forest Policy and Economics, Elsevier, vol. 73(C), pages 185-194.
    13. Linkosalo, Tapio & Kolari, Pasi & Pumpanen, Jukka, 2013. "New decomposition rate functions based on volumetric soil water content for the ROMUL soil organic matter dynamics model," Ecological Modelling, Elsevier, vol. 263(C), pages 109-118.
    14. Blattert, Clemens & Eyvindson, Kyle & Hartikainen, Markus & Burgas, Daniel & Potterf, Maria & Lukkarinen, Jani & Snäll, Tord & Toraño-Caicoya, Astor & Mönkkönen, Mikko, 2022. "Sectoral policies cause incoherence in forest management and ecosystem service provisioning," Forest Policy and Economics, Elsevier, vol. 136(C).
    15. Paloma Ruiz-Benito & Jaime Madrigal-González & Sarah Young & Pierre Mercatoris & Liam Cavin & Tsurng-Juhn Huang & Jan-Chang Chen & Alistair S Jump, 2015. "Climatic Stress during Stand Development Alters the Sign and Magnitude of Age-Related Growth Responses in a Subtropical Mountain Pine," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-18, May.
    16. Rachele Venanzi & Francesco Latterini & Walter Stefanoni & Damiano Tocci & Rodolfo Picchio, 2022. "Variations of Soil Physico-Chemical and Biological Features after Logging Using Two Different Ground-Based Extraction Methods in a Beech High Forest—A Case Study," Land, MDPI, vol. 11(3), pages 1-14, March.
    17. Jacqueline Loos & Henrik Von Wehrden, 2018. "Beyond Biodiversity Conservation: Land Sharing Constitutes Sustainable Agriculture in European Cultural Landscapes," Sustainability, MDPI, vol. 10(5), pages 1-11, May.
    18. Morag F. Macpherson & Adam Kleczkowski & John R. Healey & Chris Quine & Nick Hanley, 2016. "The Effects of Invasive Pests and Diseases on Strategies for Forest Diversification," Discussion Papers in Environment and Development Economics 2016-11, University of St. Andrews, School of Geography and Sustainable Development.
    19. Mohamed Ali Mohamed, 2021. "An Assessment of Forest Cover Change and Its Driving Forces in the Syrian Coastal Region during a Period of Conflict, 2010 to 2020," Land, MDPI, vol. 10(2), pages 1-25, February.
    20. Chen, Si & Shahi, Chander & Chen, Han Y.H. & Kumar, Praveen & Ma, Zilong & McLaren, Brian, 2018. "Trade-offs and Synergies Between Economic Gains and Plant Diversity Across a Range of Management Alternatives in Boreal Forests," Ecological Economics, Elsevier, vol. 151(C), pages 162-172.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:forpol:v:80:y:2017:i:c:p:80-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/forpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.