IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i3p709-718.html
   My bibliography  Save this article

Wood decomposition model for boreal forests

Author

Listed:
  • Tuomi, M.
  • Laiho, R.
  • Repo, A.
  • Liski, J.

Abstract

The decomposition of woody litter is a biochemical process, controlled by physical, chemical and biological environmental conditions. To develop a practicable model of this complex process, it is necessary to identify the major controlling factors and quantify their effects. We used four data sets (total N=2102) on mass loss of decomposing woody litter in Northern Europe to extend an earlier decomposition model of non-woody litter and make it suitable for describing also decomposition of woody litter. We compared alternative ways to model the effects of size and chemical composition of woody litter on decomposition using the Bayesian model selection theory. The best model fitted to the diverse data sets (woody litter of four tree species, diameter 0.5–60cm, time series up to 70 years) with little systematic error. Based on this result, we concluded that the extended model is suitable for describing decomposition of woody litter of the common tree species in the boreal forests studied. According to the model developed, frequently observed sigmoidal patterns in mass loss of woody litter are related to high concentrations of slowly decomposing lignin compounds and these patterns become stronger with an increasing size of decomposing woody litter.

Suggested Citation

  • Tuomi, M. & Laiho, R. & Repo, A. & Liski, J., 2011. "Wood decomposition model for boreal forests," Ecological Modelling, Elsevier, vol. 222(3), pages 709-718.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:3:p:709-718
    DOI: 10.1016/j.ecolmodel.2010.10.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010005855
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.10.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tuomi, Mikko & Vanhala, Pekka & Karhu, Kristiina & Fritze, Hannu & Liski, Jari, 2008. "Heterotrophic soil respiration—Comparison of different models describing its temperature dependence," Ecological Modelling, Elsevier, vol. 211(1), pages 182-190.
    2. Tuomi, M. & Thum, T. & Järvinen, H. & Fronzek, S. & Berg, B. & Harmon, M. & Trofymow, J.A. & Sevanto, S. & Liski, J., 2009. "Leaf litter decomposition—Estimates of global variability based on Yasso07 model," Ecological Modelling, Elsevier, vol. 220(23), pages 3362-3371.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sampo Soimakallio & Tuomo Kalliokoski & Aleksi Lehtonen & Olli Salminen, 2021. "On the trade-offs and synergies between forest carbon sequestration and substitution," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(1), pages 1-17, January.
    2. Didion, M. & Frey, B. & Rogiers, N. & Thürig, E., 2014. "Validating tree litter decomposition in the Yasso07 carbon model," Ecological Modelling, Elsevier, vol. 291(C), pages 58-68.
    3. Eyvindson, Kyle & Repo, Anna & Mönkkönen, Mikko, 2018. "Mitigating forest biodiversity and ecosystem service losses in the era of bio-based economy," Forest Policy and Economics, Elsevier, vol. 92(C), pages 119-127.
    4. Zubizarreta-Gerendiain, Ane & Pukkala, Timo & Peltola, Heli, 2016. "Effects of wood harvesting and utilisation policies on the carbon balance of forestry under changing climate: a Finnish case study," Forest Policy and Economics, Elsevier, vol. 62(C), pages 168-176.
    5. Blattert, Clemens & Eyvindson, Kyle & Hartikainen, Markus & Burgas, Daniel & Potterf, Maria & Lukkarinen, Jani & Snäll, Tord & Toraño-Caicoya, Astor & Mönkkönen, Mikko, 2022. "Sectoral policies cause incoherence in forest management and ecosystem service provisioning," Forest Policy and Economics, Elsevier, vol. 136(C).
    6. Triviño, María & Juutinen, Artti & Mazziotta, Adriano & Miettinen, Kaisa & Podkopaev, Dmitry & Reunanen, Pasi & Mönkkönen, Mikko, 2015. "Managing a boreal forest landscape for providing timber, storing and sequestering carbon," Ecosystem Services, Elsevier, vol. 14(C), pages 179-189.
    7. Eyvindson, Kyle & Duflot, Rémi & Triviño, María & Blattert, Clemens & Potterf, Mária & Mönkkönen, Mikko, 2021. "High boreal forest multifunctionality requires continuous cover forestry as a dominant management," Land Use Policy, Elsevier, vol. 100(C).
    8. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2016. "Forests in the Finnish low carbon scenarios," Journal of Forest Economics, Elsevier, vol. 23(C), pages 45-62.
    9. Heinonen, Tero & Pukkala, Timo & Mehtätalo, Lauri & Asikainen, Antti & Kangas, Jyrki & Peltola, Heli, 2017. "Scenario analyses for the effects of harvesting intensity on development of forest resources, timber supply, carbon balance and biodiversity of Finnish forestry," Forest Policy and Economics, Elsevier, vol. 80(C), pages 80-98.
    10. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2013. "Sequester or substitute—Consequences of increased production of wood based energy on the carbon balance in Finland," Journal of Forest Economics, Elsevier, vol. 19(4), pages 402-415.
    11. Linkosalo, Tapio & Kolari, Pasi & Pumpanen, Jukka, 2013. "New decomposition rate functions based on volumetric soil water content for the ROMUL soil organic matter dynamics model," Ecological Modelling, Elsevier, vol. 263(C), pages 109-118.
    12. Hurmekoski, Elias & Kunttu, Janni & Heinonen, Tero & Pukkala, Timo & Peltola, Heli, 2023. "Does expanding wood use in construction and textile markets contribute to climate change mitigation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    13. Repo, Anna & Ahtikoski, Anssi & Liski, Jari, 2015. "Cost of turning forest residue bioenergy to carbon neutral," Forest Policy and Economics, Elsevier, vol. 57(C), pages 12-21.
    14. Zhou, Mo, 2015. "Adapting sustainable forest management to climate policy uncertainty: A conceptual framework," Forest Policy and Economics, Elsevier, vol. 59(C), pages 66-74.
    15. Adriano Mazziotta & María Triviño & Olli-Pekka Tikkanen & Jari Kouki & Harri Strandman & Mikko Mönkkönen, 2016. "Habitat associations drive species vulnerability to climate change in boreal forests," Climatic Change, Springer, vol. 135(3), pages 585-595, April.
    16. Tryggve Persson & Gustaf Egnell, 2018. "Stump harvesting for bioenergy: A review of climatic and environmental impacts in northern Europe and America," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.
    17. Elias Hurmekoski & Tanja Myllyviita & Jyri Seppälä & Tero Heinonen & Antti Kilpeläinen & Timo Pukkala & Tuomas Mattila & Lauri Hetemäki & Antti Asikainen & Heli Peltola, 2020. "Impact of structural changes in wood‐using industries on net carbon emissions in Finland," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 899-912, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geoffrey Guest & Francesco Cherubini & Anders Strømman, 2013. "Climate impact potential of utilizing forest residues for bioenergy in Norway," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(8), pages 1089-1108, December.
    2. Yousefpour, Rasoul & You, Bin & Hanewinkel, Marc, 2019. "Simulation of extreme storm effects on regional forest soil carbon stock," Ecological Modelling, Elsevier, vol. 399(C), pages 39-53.
    3. Koponen, Kati & Soimakallio, Sampo & Tsupari, Eemeli & Thun, Rabbe & Antikainen, Riina, 2013. "GHG emission performance of various liquid transportation biofuels in Finland in accordance with the EU sustainability criteria," Applied Energy, Elsevier, vol. 102(C), pages 440-448.
    4. Ortiz, Carina A. & Liski, Jari & Gärdenäs, Annemieke I. & Lehtonen, Aleksi & Lundblad, Mattias & Stendahl, Johan & Ågren, Göran I. & Karltun, Erik, 2013. "Soil organic carbon stock changes in Swedish forest soils—A comparison of uncertainties and their sources through a national inventory and two simulation models," Ecological Modelling, Elsevier, vol. 251(C), pages 221-231.
    5. Hashimoto, Shoji & Morishita, Tomoaki & Sakata, Tadashi & Ishizuka, Shigehiro & Kaneko, Shinji & Takahashi, Masamichi, 2011. "Simple models for soil CO2, CH4, and N2O fluxes calibrated using a Bayesian approach and multi-site data," Ecological Modelling, Elsevier, vol. 222(7), pages 1283-1292.
    6. Blattert, Clemens & Eyvindson, Kyle & Hartikainen, Markus & Burgas, Daniel & Potterf, Maria & Lukkarinen, Jani & Snäll, Tord & Toraño-Caicoya, Astor & Mönkkönen, Mikko, 2022. "Sectoral policies cause incoherence in forest management and ecosystem service provisioning," Forest Policy and Economics, Elsevier, vol. 136(C).
    7. Gustavsson, Leif & Haus, Sylvia & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le, 2015. "Climate effects of bioenergy from forest residues in comparison to fossil energy," Applied Energy, Elsevier, vol. 138(C), pages 36-50.
    8. Grant, R.F., 2014. "Nitrogen mineralization drives the response of forest productivity to soil warming: Modelling in ecosys vs. measurements from the Harvard soil heating experiment," Ecological Modelling, Elsevier, vol. 288(C), pages 38-46.
    9. Bagnara, Maurizio & Van Oijen, Marcel & Cameron, David & Gianelle, Damiano & Magnani, Federico & Sottocornola, Matteo, 2018. "Bayesian calibration of simple forest models with multiplicative mathematical structure: A case study with two Light Use Efficiency models in an alpine forest," Ecological Modelling, Elsevier, vol. 371(C), pages 90-100.
    10. Fu, Yongshuo H. & Campioli, Matteo & Van Oijen, Marcel & Deckmyn, Gaby & Janssens, Ivan A., 2012. "Bayesian comparison of six different temperature-based budburst models for four temperate tree species," Ecological Modelling, Elsevier, vol. 230(C), pages 92-100.
    11. Didion, M. & Frey, B. & Rogiers, N. & Thürig, E., 2014. "Validating tree litter decomposition in the Yasso07 carbon model," Ecological Modelling, Elsevier, vol. 291(C), pages 58-68.
    12. Tuomi, M. & Thum, T. & Järvinen, H. & Fronzek, S. & Berg, B. & Harmon, M. & Trofymow, J.A. & Sevanto, S. & Liski, J., 2009. "Leaf litter decomposition—Estimates of global variability based on Yasso07 model," Ecological Modelling, Elsevier, vol. 220(23), pages 3362-3371.
    13. Taghizadeh-Toosi, Arezoo & Christensen, Bent T. & Hutchings, Nicholas J. & Vejlin, Jonas & Kätterer, Thomas & Glendining, Margaret & Olesen, Jørgen E., 2014. "C-TOOL: A simple model for simulating whole-profile carbon storage in temperate agricultural soils," Ecological Modelling, Elsevier, vol. 292(C), pages 11-25.
    14. Eyvindson, Kyle & Duflot, Rémi & Triviño, María & Blattert, Clemens & Potterf, Mária & Mönkkönen, Mikko, 2021. "High boreal forest multifunctionality requires continuous cover forestry as a dominant management," Land Use Policy, Elsevier, vol. 100(C).
    15. Repo, Anna & Ahtikoski, Anssi & Liski, Jari, 2015. "Cost of turning forest residue bioenergy to carbon neutral," Forest Policy and Economics, Elsevier, vol. 57(C), pages 12-21.
    16. Eyvindson, Kyle & Repo, Anna & Mönkkönen, Mikko, 2018. "Mitigating forest biodiversity and ecosystem service losses in the era of bio-based economy," Forest Policy and Economics, Elsevier, vol. 92(C), pages 119-127.
    17. Harris, Nancy L. & Hall, Charles A.S. & Lugo, Ariel E., 2008. "Estimates of species- and ecosystem-level respiration of woody stems along an elevational gradient in the Luquillo Mountains, Puerto Rico," Ecological Modelling, Elsevier, vol. 216(3), pages 253-264.
    18. Rämö, Janne & Tupek, Boris & Lehtonen, Heikki & Mäkipää, Raisa, 2023. "Towards climate targets with cropland afforestation – effect of subsidies on profitability," Land Use Policy, Elsevier, vol. 124(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:3:p:709-718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.