IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v174y2023ics1364032123000084.html
   My bibliography  Save this article

Does expanding wood use in construction and textile markets contribute to climate change mitigation?

Author

Listed:
  • Hurmekoski, Elias
  • Kunttu, Janni
  • Heinonen, Tero
  • Pukkala, Timo
  • Peltola, Heli

Abstract

Wood use is expanding to new markets, driven by the need to substitute fossil-intensive products and energy. Wood products can contribute to climate change mitigation, if they have a lower fossil footprint than alternative products serving the same function. However, the climate change mitigation potential is contingent on the net fossil and biogenic emissions over time, as well as the realism of the counterfactual scenario and market assumptions. This study aims to improve the consistency of assessing the avoided fossil emissions attributed to changes in wood use, and to estimate the additional mitigation potential of increased wood use in construction and textile markets based on wood harvested in Finland. The results show that, compared to baseline, an increase in the market share of wood leads to an increase in atmospheric CO2 concentration by 2050. Thus, the substitution impacts of wood use are not large enough to compensate for the reduction in forest carbon sinks in the short and medium term. This outcome is further aggravated, considering the decarbonization of the energy sector driven by the Paris Agreement, which lowers the fossil emissions of competing sectors more than those of the forest sector. The expected decarbonization is a highly desirable trend, but it will further lengthen the carbon parity period associated with an increase in wood harvest. This creates a strong motive to pursue shifts in wood uses instead of merely expanding all wood uses.

Suggested Citation

  • Hurmekoski, Elias & Kunttu, Janni & Heinonen, Tero & Pukkala, Timo & Peltola, Heli, 2023. "Does expanding wood use in construction and textile markets contribute to climate change mitigation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:rensus:v:174:y:2023:i:c:s1364032123000084
    DOI: 10.1016/j.rser.2023.113152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123000084
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heinonen, Tero & Pukkala, Timo & Mehtätalo, Lauri & Asikainen, Antti & Kangas, Jyrki & Peltola, Heli, 2017. "Scenario analyses for the effects of harvesting intensity on development of forest resources, timber supply, carbon balance and biodiversity of Finnish forestry," Forest Policy and Economics, Elsevier, vol. 80(C), pages 80-98.
    2. Gustavsson, Leif & Haus, Sylvia & Lundblad, Mattias & Lundström, Anders & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le & Wikberg, Per-Erik, 2017. "Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 612-624.
    3. Zubizarreta-Gerendiain, Ane & Pukkala, Timo & Peltola, Heli, 2016. "Effects of wood harvesting and utilisation policies on the carbon balance of forestry under changing climate: a Finnish case study," Forest Policy and Economics, Elsevier, vol. 62(C), pages 168-176.
    4. Richard York, 2012. "Do alternative energy sources displace fossil fuels?," Nature Climate Change, Nature, vol. 2(6), pages 441-443, June.
    5. Tuomi, M. & Laiho, R. & Repo, A. & Liski, J., 2011. "Wood decomposition model for boreal forests," Ecological Modelling, Elsevier, vol. 222(3), pages 709-718.
    6. Nabuurs, Gert-Jan & Arets, Eric J.M.M. & Schelhaas, Mart-Jan, 2017. "European forests show no carbon debt, only a long parity effect," Forest Policy and Economics, Elsevier, vol. 75(C), pages 120-125.
    7. Shen, Li & Worrell, Ernst & Patel, Martin K., 2010. "Environmental impact assessment of man-made cellulose fibres," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 260-274.
    8. Blattert, Clemens & Lemm, Renato & Thürig, Esther & Stadelmann, Golo & Brändli, Urs-Beat & Temperli, Christian, 2020. "Long-term impacts of increased timber harvests on ecosystem services and biodiversity: A scenario study based on national forest inventory data," Ecosystem Services, Elsevier, vol. 45(C).
    9. Leif Gustavsson & Kim Pingoud & Roger Sathre, 2006. "Carbon Dioxide Balance of Wood Substitution: Comparing Concrete- and Wood-Framed Buildings," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(3), pages 667-691, May.
    10. Elias Hurmekoski & Juulia Suuronen & Lassi Ahlvik & Janni Kunttu & Tanja Myllyviita, 2022. "Substitution impacts of wood‐based textile fibers: Influence of market assumptions," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1564-1577, August.
    11. Abhijeet Mishra & Florian Humpenöder & Galina Churkina & Christopher P. O. Reyer & Felicitas Beier & Benjamin Leon Bodirsky & Hans Joachim Schellnhuber & Hermann Lotze-Campen & Alexander Popp, 2022. "Land use change and carbon emissions of a transformation to timber cities," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Jonsson, Ragnar & Rinaldi, Francesca & Pilli, Roberto & Fiorese, Giulia & Hurmekoski, Elias & Cazzaniga, Noemi & Robert, Nicolas & Camia, Andrea, 2021. "Boosting the EU forest-based bioeconomy: Market, climate, and employment impacts," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    13. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2016. "Forests in the Finnish low carbon scenarios," Journal of Forest Economics, Elsevier, vol. 23(C), pages 45-62.
    14. Elias Hurmekoski & Tanja Myllyviita & Jyri Seppälä & Tero Heinonen & Antti Kilpeläinen & Timo Pukkala & Tuomas Mattila & Lauri Hetemäki & Antti Asikainen & Heli Peltola, 2020. "Impact of structural changes in wood‐using industries on net carbon emissions in Finland," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 899-912, August.
    15. Rüter, Sebastian & Werner, Frank & Forsell, Nicklas & Prins, Christopher & Vial, Estelle & Levet, Anne-Laure, 2016. "ClimWood2030 - Climate benefits of material substitution by forest biomass and harvested wood products: Perspective 2030. Final report," Thünen Reports 42, Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hetemäki, L. & D'Amato, D. & Giurca, A. & Hurmekoski, E., 2024. "Synergies and trade-offs in the European forest bioeconomy research: State of the art and the way forward," Forest Policy and Economics, Elsevier, vol. 163(C).
    2. Metzler, Holger & Launiainen, Samuli & Vico, Giulia, 2024. "Amount of carbon fixed, transit time and fate of harvested wood products define the climate change mitigation potential of boreal forest management—A model analysis," Ecological Modelling, Elsevier, vol. 491(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sampo Soimakallio & Tuomo Kalliokoski & Aleksi Lehtonen & Olli Salminen, 2021. "On the trade-offs and synergies between forest carbon sequestration and substitution," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(1), pages 1-17, January.
    2. Elias Hurmekoski & Tanja Myllyviita & Jyri Seppälä & Tero Heinonen & Antti Kilpeläinen & Timo Pukkala & Tuomas Mattila & Lauri Hetemäki & Antti Asikainen & Heli Peltola, 2020. "Impact of structural changes in wood‐using industries on net carbon emissions in Finland," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 899-912, August.
    3. Elias Hurmekoski & Juulia Suuronen & Lassi Ahlvik & Janni Kunttu & Tanja Myllyviita, 2022. "Substitution impacts of wood‐based textile fibers: Influence of market assumptions," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1564-1577, August.
    4. Giuntoli, J. & Searle, S. & Jonsson, R. & Agostini, A. & Robert, N. & Amaducci, S. & Marelli, L. & Camia, A., 2020. "Carbon accounting of bioenergy and forest management nexus. A reality-check of modeling assumptions and expectations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Koponen, Kati & Soimakallio, Sampo & Kline, Keith L. & Cowie, Annette & Brandão, Miguel, 2018. "Quantifying the climate effects of bioenergy – Choice of reference system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2271-2280.
    6. Edgaras Linkevičius & Povilas Žemaitis & Marius Aleinikovas, 2023. "Sustainability Impacts of Wood- and Concrete-Based Frame Buildings," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    7. Heinonen, Tero & Pukkala, Timo & Mehtätalo, Lauri & Asikainen, Antti & Kangas, Jyrki & Peltola, Heli, 2017. "Scenario analyses for the effects of harvesting intensity on development of forest resources, timber supply, carbon balance and biodiversity of Finnish forestry," Forest Policy and Economics, Elsevier, vol. 80(C), pages 80-98.
    8. Eyvindson, Kyle & Duflot, Rémi & Triviño, María & Blattert, Clemens & Potterf, Mária & Mönkkönen, Mikko, 2021. "High boreal forest multifunctionality requires continuous cover forestry as a dominant management," Land Use Policy, Elsevier, vol. 100(C).
    9. Luhas, Jukka & Mikkilä, Mirja & Kylkilahti, Eliisa & Miettinen, Jenni & Malkamäki, Arttu & Pätäri, Satu & Korhonen, Jaana & Pekkanen, Tiia-Lotta & Tuppura, Anni & Lähtinen, Katja & Autio, Minna & Linn, 2021. "Pathways to a forest-based bioeconomy in 2060 within policy targets on climate change mitigation and biodiversity protection," Forest Policy and Economics, Elsevier, vol. 131(C).
    10. Eyvindson, Kyle & Repo, Anna & Mönkkönen, Mikko, 2018. "Mitigating forest biodiversity and ecosystem service losses in the era of bio-based economy," Forest Policy and Economics, Elsevier, vol. 92(C), pages 119-127.
    11. Vauhkonen, Jari & Packalen, Tuula, 2018. "Uncertainties related to climate change and forest management with implications on climate regulation in Finland," Ecosystem Services, Elsevier, vol. 33(PB), pages 213-224.
    12. Hallberg-Sramek, Isabella & Nordström, Eva-Maria & Priebe, Janina & Reimerson, Elsa & Mårald, Erland & Nordin, Annika, 2023. "Combining scientific and local knowledge improves evaluating future scenarios of forest ecosystem services," Ecosystem Services, Elsevier, vol. 60(C).
    13. Linghua Qiu & Junhao He & Chao Yue & Philippe Ciais & Chunmiao Zheng, 2024. "Substantial terrestrial carbon emissions from global expansion of impervious surface area," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Marietta Markiewicz & Łukasz Muślewski, 2019. "The Impact of Powering an Engine with Fuels from Renewable Energy Sources including its Software Modification on a Drive Unit Performance Parameters," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    15. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2013. "Sequester or substitute—Consequences of increased production of wood based energy on the carbon balance in Finland," Journal of Forest Economics, Elsevier, vol. 19(4), pages 402-415.
    16. Ajayi, Temitope & Awolayo, Adedapo & Gomes, Jorge S. & Parra, Humberto & Hu, Jialiang, 2019. "Large scale modeling and assessment of the feasibility of CO2 storage onshore Abu Dhabi," Energy, Elsevier, vol. 185(C), pages 653-670.
    17. Matthew Houser, 2022. "Does adopting a nitrogen best management practice reduce nitrogen fertilizer rates?," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(1), pages 79-94, March.
    18. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2016. "Forests in the Finnish low carbon scenarios," Journal of Forest Economics, Elsevier, vol. 23(C), pages 45-62.
    19. Sathre, Roger & Gustavsson, Leif, 2009. "Process-based analysis of added value in forest product industries," Forest Policy and Economics, Elsevier, vol. 11(1), pages 65-75, January.
    20. Petri P. Kärenlampi, 2021. "Capital Return Rate and Carbon Storage on Forest Estates of Three Boreal Tree Species," Sustainability, MDPI, vol. 13(12), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:174:y:2023:i:c:s1364032123000084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.