The value of cross-data set analysis for automobile insurance fraud detection
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ribaf.2022.101769
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Adrian BANARESCU & Aurel-Mihail BALOI, 2015. "Preventing and Detecting Fraud through Data Analytics in auto insurance field," Romanian Journal of Economics, Institute of National Economy, vol. 40(1(49)), pages 89-114, june.
- Shinichi Nakagawa, 2004. "A farewell to Bonferroni: the problems of low statistical power and publication bias," Behavioral Ecology, International Society for Behavioral Ecology, vol. 15(6), pages 1044-1045, November.
- Jean Pinquet & Mercedes Ayuso & Montserrat Guillén, 2007.
"Selection Bias and Auditing Policies for Insurance Claims,"
Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 74(2), pages 425-440, June.
- Mercedes Ayuso & Montserrat Guillén & Jean Pinquet, 2007. "Selection bias and auditing policies for insurance claims," Post-Print hal-00243035, HAL.
- Jean Pinquet & Guillén Montserrat & Mercedes Ayuso, 2007. "Selection bias and auditing policies for insurance claims," Post-Print hal-00397272, HAL.
- Viaene, Stijn & Ayuso, Mercedes & Guillen, Montserrat & Van Gheel, Dirk & Dedene, Guido, 2007. "Strategies for detecting fraudulent claims in the automobile insurance industry," European Journal of Operational Research, Elsevier, vol. 176(1), pages 565-583, January.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Georges Dionne & Florence Giuliano & Pierre Picard, 2009.
"Optimal Auditing with Scoring: Theory and Application to Insurance Fraud,"
Management Science, INFORMS, vol. 55(1), pages 58-70, January.
- Georges Dionne & Florence Giuliano & Pierre Picard, 2005. "Optimal Auditing with Scoring Theory and Application to Insurance Fraud," Working Papers hal-00243026, HAL.
- Dionne, Georges & Giuliano, Florence & Picard, Pierre, 2008. "Optimal auditing with ccoring: Theory and application to insurance fraud," Working Papers 02-5, HEC Montreal, Canada Research Chair in Risk Management.
- Dionne, Georges & Giuliano, Florence & Picard, Pierre, 2009. "Optimal auditing with scoring: theory and application to insurance fraud," MPRA Paper 18374, University Library of Munich, Germany.
- Warren, Danielle E. & Schweitzer, Maurice E., 2021. "When weak sanctioning systems work: Evidence from auto insurance industry fraud investigations," Organizational Behavior and Human Decision Processes, Elsevier, vol. 166(C), pages 68-83.
- El Bachir, Belhadji & Dionne, Georges, 1997.
"Development of an expert system for the automatic detection of automobile insurance fraud,"
Working Papers
97-6, HEC Montreal, Canada Research Chair in Risk Management.
- Belhadji, B. & Dionne, G., 1997. "Development of an Expert System for Automatic Detection of Automobile Insurance Fraud," Ecole des Hautes Etudes Commerciales de Montreal- 97-06, Ecole des Hautes Etudes Commerciales de Montreal-Chaire de gestion des risques..
- Goodell, John W. & Kumar, Satish & Lim, Weng Marc & Pattnaik, Debidutta, 2021. "Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
- Steven B. Caudill & Mercedes Ayuso & Montserrat Guillén, 2005. "Fraud Detection Using a Multinomial Logit Model With Missing Information," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 72(4), pages 539-550, December.
- Duan, Yuejiao & Goodell, John W. & Li, Haoran & Li, Xinming, 2022. "Assessing machine learning for forecasting economic risk: Evidence from an expanded Chinese financial information set," Finance Research Letters, Elsevier, vol. 46(PA).
- Véronique Van Vlasselaer & Tina Eliassi-Rad & Leman Akoglu & Monique Snoeck & Bart Baesens, 2017. "GOTCHA! Network-Based Fraud Detection for Social Security Fraud," Management Science, INFORMS, vol. 63(9), pages 3090-3110, September.
- repec:ine:journl:v:40:y:2015:i:49:p:63-88 is not listed on IDEAS
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bermúdez, Ll. & Pérez, J.M. & Ayuso, M. & Gómez, E. & Vázquez, F.J., 2008. "A Bayesian dichotomous model with asymmetric link for fraud in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 779-786, April.
- Denisa BANULESCU-RADU & Meryem YANKOL-SCHALCK, 2021. "Fraud detection in the era of Machine Learning: a household insurance case," LEO Working Papers / DR LEO 2904, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Jing Ai & Patrick L. Brockett & Linda L. Golden & Montserrat Guillén, 2013. "A Robust Unsupervised Method for Fraud Rate Estimation," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(1), pages 121-143, March.
- Dionne, Georges, 2012.
"The empirical measure of information problems with emphasis on insurance fraud and dynamic data,"
Working Papers
12-10, HEC Montreal, Canada Research Chair in Risk Management.
- Georges Dionne, 2012. "The Empirical Measure of Information Problems with Emphasis on Insurance Fraud and Dynamic Data," Cahiers de recherche 1233, CIRPEE.
- Galeotti, Marcello & Rabitti, Giovanni & Vannucci, Emanuele, 2020. "An evolutionary approach to fraud management," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1167-1177.
- Katja Müller & Hato Schmeiser & Joël Wagner, 2016. "The impact of auditing strategies on insurers’ profitability," Journal of Risk Finance, Emerald Group Publishing, vol. 17(1), pages 46-79, January.
- Chu-Shiu Li & Chwen-Chi Liu & Sheng-Chang Peng, 2013. "Expiration Dates in Automobile Insurance Contracts: The Curious Case of Last Policy Month Claims in Taiwan," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 38(1), pages 23-47, March.
- Ming-Jyh Wang & Chieh-Hua Wen & Lawrence W Lan, 2010. "Modelling Different Types of Bundled Automobile Insurance Choice Behaviour: The Case of Taiwan*," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 35(2), pages 290-308, April.
- Höppner, Sebastiaan & Baesens, Bart & Verbeke, Wouter & Verdonck, Tim, 2022. "Instance-dependent cost-sensitive learning for detecting transfer fraud," European Journal of Operational Research, Elsevier, vol. 297(1), pages 291-300.
- Urbina, Jilber & Guillén, Montserrat, 2013.
"An application of capital allocation principles to operational risk,"
Working Papers
2072/222201, Universitat Rovira i Virgili, Department of Economics.
- Urbina, Jilber & Guillén, Montserrat, 2013. "An application of capital allocation principles to operational risk," MPRA Paper 75726, University Library of Munich, Germany, revised Dec 2013.
- Tino Werner, 2022. "Elicitability of Instance and Object Ranking," Decision Analysis, INFORMS, vol. 19(2), pages 123-140, June.
- Mavruk, Taylan, 2022. "Analysis of herding behavior in individual investor portfolios using machine learning algorithms," Research in International Business and Finance, Elsevier, vol. 62(C).
- Lina Bouayad & Balaji Padmanabhan & Kaushal Chari, 2019. "Audit Policies Under the Sentinel Effect: Deterrence-Driven Algorithms," Information Systems Research, INFORMS, vol. 30(2), pages 466-485, June.
- Johanna M. Orozco-Castañeda & Sebastián Alzate-Vargas & Danilo Bedoya-Valencia, 2024. "Evaluating Volatility Using an ANFIS Model for Financial Time Series Prediction," Risks, MDPI, vol. 12(10), pages 1-15, September.
- Farbmacher, Helmut & Löw, Leander & Spindler, Martin, 2022. "An explainable attention network for fraud detection in claims management," Journal of Econometrics, Elsevier, vol. 228(2), pages 244-258.
- Michele Tumminello & Andrea Consiglio & Pietro Vassallo & Riccardo Cesari & Fabio Farabullini, 2023. "Insurance fraud detection: A statistically validated network approach," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 381-419, June.
- Awijen, Haithem & Ben Zaied, Younes & Ben Lahouel, Béchir & Khlifi, Foued, 2023. "Machine learning for US cross-industry return predictability under information uncertainty," Research in International Business and Finance, Elsevier, vol. 64(C).
- João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020.
"Nowcasting East German GDP growth: a MIDAS approach,"
Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
- Claudio, João C. & Heinisch, Katja & Holtemöller, Oliver, 2019. "Nowcasting East German GDP growth: A MIDAS approach," IWH Discussion Papers 24/2019, Halle Institute for Economic Research (IWH).
- Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
- Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017.
"Anchoring the yield curve using survey expectations,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
- Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2013. "Anchoring the yield curve using survey expectations," CeMMAP working papers CWP52/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Giacomini, Raffaella & Ragusa, Giuseppe & Altavilla, Carlo, 2013. "Anchoring the Yield Curve Using Survey Expectations," CEPR Discussion Papers 9738, C.E.P.R. Discussion Papers.
- Giacomini, Raffaella & Altavilla, Carlo & Ragusa, Giuseppe, 2014. "Anchoring the yield curve using survey expectations," Working Paper Series 1632, European Central Bank.
- Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2013. "Anchoring the yield curve using survey expectations," CeMMAP working papers 52/13, Institute for Fiscal Studies.
More about this item
Keywords
Fraud detection; Automobile insurance; Cross-data set; Natural language processing; Boosting; Neutral network;All these keywords.
JEL classification:
- G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
- G29 - Financial Economics - - Financial Institutions and Services - - - Other
- C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
- C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
- C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:63:y:2022:i:c:s0275531922001556. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.