Forecasting Tail Risks
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Gianni De Nicolò & Marcella Lucchetta, 2017. "Forecasting Tail Risks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 159-170, January.
References listed on IDEAS
- Tilmann Gneiting & Roopesh Ranjan, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 411-422, July.
- Gneiting, Tilmann & Ranjan, Roopesh, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 411-422.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022.
"Specification Choices in Quantile Regression for Empirical Macroeconomics,"
Working Papers
22-25, Federal Reserve Bank of Cleveland.
- Carriero, Andrea & Clark, Todd & Marcellino, Massimiliano, 2024. "Specification Choices in Quantile Regression for Empirical Macroeconomics," CEPR Discussion Papers 18901, C.E.P.R. Discussion Papers.
- Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023.
"Forecasting electricity prices with expert, linear, and nonlinear models,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
- Anna Gloria Billé & Angelica Gianfreda & Filippo Del Grosso & Francesco Ravazzolo, 2021. "Forecasting Electricity Prices with Expert, Linear and Non-Linear Models," Working Paper series 21-20, Rimini Centre for Economic Analysis.
- Michael W. McCracken & Michael T. Owyang & Tatevik Sekhposyan, 2021.
"Real-Time Forecasting and Scenario Analysis Using a Large Mixed-Frequency Bayesian VAR,"
International Journal of Central Banking, International Journal of Central Banking, vol. 17(71), pages 1-41, December.
- Michael W. McCracken & Michael T. Owyang & Tatevik Sekhposyan, 2015. "Real-Time Forecasting and Scenario Analysis using a Large Mixed-Frequency Bayesian VAR," Working Papers 2015-030, Federal Reserve Bank of St. Louis, revised 10 Apr 2020.
- Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024.
"Daily growth at risk: Financial or real drivers? The answer is not always the same,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
- Helena Chuliá & Ignacio Garrón & Jorge M. Uribe, 2022. ""Daily Growth at Risk: financial or real drivers? The answer is not always the same"," IREA Working Papers 202208, University of Barcelona, Research Institute of Applied Economics, revised Jun 2022.
- Kelly Trinh & Bo Zhang & Chenghan Hou, 2025. "Macroeconomic real‐time forecasts of univariate models with flexible error structures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(1), pages 59-78, January.
- Jackson, Emerson Abraham & Tamuke, Edmund, 2018. "Probability Forecast Using Fan Chart Analysis: A case of the Sierra Leone Economy," MPRA Paper 88853, University Library of Munich, Germany, revised 04 Sep 2018.
- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2020. "Large Time-Varying Volatility Models for Electricity Prices," Working Papers No 05/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2014.
"Causality and predictability in distribution: The ethanol–food price relation revisited,"
Energy Economics, Elsevier, vol. 42(C), pages 152-160.
- Marzio GALEOTTI & Andrea BASTIANIN & Matteo MANERA, 2013. "Food versus Fuel: Causality and Predictability in Distribution," Departmental Working Papers 2013-10, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2013. "Food versus Fuel: Causality and Predictability in Distribution," Working Papers 2013.23, Fondazione Eni Enrico Mattei.
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2013. "Food versus Fuel: Causality and Predictability in Distribution," IEFE Working Papers 56, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2013. "Food versus Fuel: Causality and Predictability in Distribution," Working Papers 241, University of Milano-Bicocca, Department of Economics, revised Mar 2013.
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2024.
"Investigating Growth-at-Risk Using a Multicountry Nonparametric Quantile Factor Model,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(4), pages 1302-1317, October.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2021. "Investigating Growth at Risk Using a Multi-country Non-parametric Quantile Factor Model," Papers 2110.03411, arXiv.org.
- Clark, Todd & Huber, Florian & Koop, Gary & Marcellino, Massimiliano & Pfarrhofer, Michael, 2023. "Investigating Growth-at-Risk Using a Multicountry Non-parametric Quantile Factor Model," CEPR Discussion Papers 18549, C.E.P.R. Discussion Papers.
- Todd Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2021. "Investigating Growth at Risk Using a Multi-country Non-parametric Quantile Factor Model," Working Papers 2307, University of Strathclyde Business School, Department of Economics.
- Knotek, Edward S. & Zaman, Saeed, 2023.
"Real-time density nowcasts of US inflation: A model combination approach,"
International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
- Edward Knotek & Saeed Zaman, 2020. "Real-time density nowcasts of US inflation: a model-combination approach," Working Papers 2015, University of Strathclyde Business School, Department of Economics.
- Edward S. Knotek & Saeed Zaman, 2020. "Real-Time Density Nowcasts of US Inflation: A Model-Combination Approach," Working Papers 20-31, Federal Reserve Bank of Cleveland.
- Berg, Tim O. & Henzel, Steffen R., 2015.
"Point and density forecasts for the euro area using Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
- Berg, Tim Oliver & Henzel, Steffen, 2013. "Point and Density Forecasts for the Euro Area Using Many Predictors: Are Large BVARs Really Superior?," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79783, Verein für Socialpolitik / German Economic Association.
- Tim Oliver Berg & Steffen Henzel, 2013. "Point and Density Forecasts for the Euro Area Using Many Predictors: Are Large BVARs Really Superior?," ifo Working Paper Series 155, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Tim Oliver Berg & Steffen Henzel, 2014. "Point and Density Forecasts for the Euro Area Using Bayesian VARs," CESifo Working Paper Series 4711, CESifo.
- Chris McDonald & Craig Thamotheram & Shaun P. Vahey & Elizabeth C. Wakerly, 2016.
"Assessing the economic value of probabilistic forecasts in the presence of an inflation target,"
Reserve Bank of New Zealand Discussion Paper Series
DP2016/10, Reserve Bank of New Zealand.
- Christopher McDonald & Craig Thamotheram & Shaun P. Vahey & Elizabeth C. Wakerly, 2016. "Assessing the economic value of probabilistic forecasts in the presence of an inflation target," CAMA Working Papers 2016-40, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Iacopini, Matteo & Poon, Aubrey & Rossini, Luca & Zhu, Dan, 2023.
"Bayesian mixed-frequency quantile vector autoregression: Eliciting tail risks of monthly US GDP,"
Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
- Matteo Iacopini & Aubrey Poon & Luca Rossini & Dan Zhu, 2022. "Bayesian Mixed-Frequency Quantile Vector Autoregression: Eliciting tail risks of Monthly US GDP," Papers 2209.01910, arXiv.org.
- Hauzenberger, Niko & Pfarrhofer, Michael & Rossini, Luca, 2025. "Sparse time-varying parameter VECMs with an application to modeling electricity prices," International Journal of Forecasting, Elsevier, vol. 41(1), pages 361-376.
- Jan Prüser & Florian Huber, 2024.
"Nonlinearities in macroeconomic tail risk through the lens of big data quantile regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 269-291, March.
- Jan Pruser & Florian Huber, 2023. "Nonlinearities in Macroeconomic Tail Risk through the Lens of Big Data Quantile Regressions," Papers 2301.13604, arXiv.org, revised Sep 2023.
- Davide Pettenuzzo & Rossen Valkanov & Allan Timmermann, 2014.
"A Bayesian MIDAS Approach to Modeling First and Second Moment Dynamics,"
Working Papers
76, Brandeis University, Department of Economics and International Business School.
- Timmermann, Allan & Pettenuzzo, Davide & Valkanov, Rossen, 2014. "A Bayesian MIDAS Approach to Modeling First and Second Moment Dynamics," CEPR Discussion Papers 10160, C.E.P.R. Discussion Papers.
- repec:wrk:wrkemf:09 is not listed on IDEAS
- Manzan, Sebastiano & Zerom, Dawit, 2013.
"Are macroeconomic variables useful for forecasting the distribution of U.S. inflation?,"
International Journal of Forecasting, Elsevier, vol. 29(3), pages 469-478.
- Manzan, Sebastiano & Zerom, Dawit, 2009. "Are Macroeconomic Variables Useful for Forecasting the Distribution of U.S. Inflation?," MPRA Paper 14387, University Library of Munich, Germany.
- repec:wrk:wrkemf:05 is not listed on IDEAS
- Nima Nonejad, 2021. "Bayesian model averaging and the conditional volatility process: an application to predicting aggregate equity returns by conditioning on economic variables," Quantitative Finance, Taylor & Francis Journals, vol. 21(8), pages 1387-1411, August.
- Busetti, Fabio & Caivano, Michele & Delle Monache, Davide & Pacella, Claudia, 2021.
"The time-varying risk of Italian GDP,"
Economic Modelling, Elsevier, vol. 101(C).
- Fabio Busetti & Michele Caivano & Davide Delle Monache & Claudia Pacella, 2020. "The time-varying risk of Italian GDP," Temi di discussione (Economic working papers) 1288, Bank of Italy, Economic Research and International Relations Area.
More about this item
Keywords
tail risks; density forecasts; factor models; quantile projections;All these keywords.
JEL classification:
- C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
- E30 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - General (includes Measurement and Data)
- G20 - Financial Economics - - Financial Institutions and Services - - - General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_5286. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/cesifde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.