IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v12y2012i4p531-545.html
   My bibliography  Save this article

Model calibration and automated trading agent for Euro futures

Author

Listed:
  • Germán Creamer

Abstract

We explored the application of a machine learning method, Logitboost, to automatically calibrate a trading model using different versions of the same technical analysis indicators. This approach takes advantage of boosting's feature selection capability to select an optimal combination of technical indicators and design a new set of trading rules. We tested this approach with high-frequency data of the Dow Jones EURO STOXX 50 Index Futures (FESX) and the DAX Futures (FDAX) for March 2009. Our method was implemented with different learning algorithms and outperformed a combination of the same group of technical analysis indicators using the parameters typically recommended by practitioners. We incorporated this method of model calibration in a trading agent that relies on a layered structure consisting of the machine learning algorithm described above, an online learning utility, a trading strategy, and a risk management overlay. The online learning layer combines the output of several experts and suggests a short or long position. If the expected position is positive (negative), the trading agent sends a buy (sell) limit order at prices slightly lower (higher) than the bid price at the top of the buy (sell) order book less (plus) transaction costs. If the order is not 100% filled within a fixed period (i.e. 1 minute) of being issued, the existent limit orders are cancelled, and limit orders are reissued according to the new experts' forecast. As part of its risk management capability, the trading agent eliminates any weak trading signal. The trading agent algorithm generated positive returns for the two major European index futures (FESX and FDAX) and outperformed a buy-and-hold strategy.

Suggested Citation

  • Germán Creamer, 2012. "Model calibration and automated trading agent for Euro futures," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 531-545, December.
  • Handle: RePEc:taf:quantf:v:12:y:2012:i:4:p:531-545
    DOI: 10.1080/14697688.2012.664921
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2012.664921
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2012.664921?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Norman Ehrentreich, 2002. "The Santa Fe Artificial Stock Market Re-Examined - Suggested Corrections," Computational Economics 0209001, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salman Bahoo & Marco Cucculelli & Xhoana Goga & Jasmine Mondolo, 2024. "Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis," SN Business & Economics, Springer, vol. 4(2), pages 1-46, February.
    2. Peng, Yaohao & de Moraes Souza, João Gabriel, 2024. "Chaos, overfitting and equilibrium: To what extent can machine learning beat the financial market?," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    3. Evangelos Liaras & Michail Nerantzidis & Antonios Alexandridis, 2024. "Machine learning in accounting and finance research: a literature review," Review of Quantitative Finance and Accounting, Springer, vol. 63(4), pages 1431-1471, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    2. José Manuel Galán & Luis R. Izquierdo & Segismundo S. Izquierdo & José Ignacio Santos & Ricardo del Olmo & Adolfo López-Paredes & Bruce Edmonds, 2009. "Errors and Artefacts in Agent-Based Modelling," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(1), pages 1-1.
    3. Haijun Yang & Harry Wang & Gui Sun & Li Wang, 2015. "A comparison of U.S and Chinese financial market microstructure: heterogeneous agent-based multi-asset artificial stock markets approach," Journal of Evolutionary Economics, Springer, vol. 25(5), pages 901-924, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:12:y:2012:i:4:p:531-545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.