IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v139y2020ics0960077920304525.html
   My bibliography  Save this article

An empirical overview of nonlinearity and overfitting in machine learning using COVID-19 data

Author

Listed:
  • Peng, Yaohao
  • Nagata, Mateus Hiro

Abstract

In this paper, we applied support vector regression to predict the number of COVID-19 cases for the 12 most-affected countries, testing for different structures of nonlinearity using Kernel functions and analyzing the sensitivity of the models’ predictive performance to different hyperparameters settings using 3-D interpolated surfaces. In our experiment, the model that incorporates the highest degree of nonlinearity (Gaussian Kernel) had the best in-sample performance, but also yielded the worst out-of-sample predictions, a typical example of overfitting in a machine learning model. On the other hand, the linear Kernel function performed badly in-sample but generated the best out-of-sample forecasts. The findings of this paper provide an empirical assessment of fundamental concepts in data analysis and evidence the need for caution when applying machine learning models to support real-world decision making, notably with respect to the challenges arising from the COVID-19 pandemics.

Suggested Citation

  • Peng, Yaohao & Nagata, Mateus Hiro, 2020. "An empirical overview of nonlinearity and overfitting in machine learning using COVID-19 data," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304525
    DOI: 10.1016/j.chaos.2020.110055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920304525
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    2. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    3. Chimmula, Vinay Kumar Reddy & Zhang, Lei, 2020. "Time series forecasting of COVID-19 transmission in Canada using LSTM networks," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    4. Wang, Shaojie & He, Shaobo & Yousefpour, Amin & Jahanshahi, Hadi & Repnik, Robert & Perc, Matjaž, 2020. "Chaos and complexity in a fractional-order financial system with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alireza Tavakolian & Alireza Rezaee & Farshid Hajati & Shahadat Uddin, 2023. "Hospital Readmission and Length-of-Stay Prediction Using an Optimized Hybrid Deep Model," Future Internet, MDPI, vol. 15(9), pages 1-21, September.
    2. Wenhui Ke & Yimin Lu, 2024. "Ensemble Prediction Method Based on Decomposition–Reconstitution–Integration for COVID-19 Outbreak Prediction," Mathematics, MDPI, vol. 12(3), pages 1-20, February.
    3. Szczygielski, Jan Jakub & Charteris, Ailie & Bwanya, Princess Rutendo & Brzeszczyński, Janusz, 2023. "Which COVID-19 information really impacts stock markets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 84(C).
    4. James Ming Chen & Mira Zovko & Nika Šimurina & Vatroslav Zovko, 2021. "Fear in a Handful of Dust: The Epidemiological, Environmental, and Economic Drivers of Death by PM 2.5 Pollution," IJERPH, MDPI, vol. 18(16), pages 1-59, August.
    5. Xiaojin Xie & Kangyang Luo & Zhixiang Yin & Guoqiang Wang, 2021. "Nonlinear Combinational Dynamic Transmission Rate Model and Its Application in Global COVID-19 Epidemic Prediction and Analysis," Mathematics, MDPI, vol. 9(18), pages 1-17, September.
    6. Gerardo Alfonso Perez & Raquel Castillo, 2023. "Categorical Variable Mapping Considerations in Classification Problems: Protein Application," Mathematics, MDPI, vol. 11(2), pages 1-26, January.
    7. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carl Remlinger & Bri`ere Marie & Alasseur Cl'emence & Joseph Mikael, 2021. "Expert Aggregation for Financial Forecasting," Papers 2111.15365, arXiv.org, revised Jul 2023.
    2. Chao, Xiangrui & Ran, Qin & Chen, Jia & Li, Tie & Qian, Qian & Ergu, Daji, 2022. "Regulatory technology (Reg-Tech) in financial stability supervision: Taxonomy, key methods, applications and future directions," International Review of Financial Analysis, Elsevier, vol. 80(C).
    3. Michalski, Lachlan & Low, Rand Kwong Yew, 2024. "Determinants of corporate credit ratings: Does ESG matter?," International Review of Financial Analysis, Elsevier, vol. 94(C).
    4. Guillaume Coqueret, 2023. "Forking paths in financial economics," Papers 2401.08606, arXiv.org.
    5. Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Journal of Econometrics, Elsevier, vol. 237(2).
    6. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    7. Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
    8. Tobias Götze & Marc Gürtler & Eileen Witowski, 2020. "Improving CAT bond pricing models via machine learning," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 428-446, September.
    9. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    10. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    11. Eghbal Rahimikia & Stefan Zohren & Ser-Huang Poon, 2021. "Realised Volatility Forecasting: Machine Learning via Financial Word Embedding," Papers 2108.00480, arXiv.org, revised Mar 2023.
    12. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    13. Daníelsson, Jón & Macrae, Robert & Uthemann, Andreas, 2022. "Artificial intelligence and systemic risk," Journal of Banking & Finance, Elsevier, vol. 140(C).
    14. Guo, Li & Sang, Bo & Tu, Jun & Wang, Yu, 2024. "Cross-cryptocurrency return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
    15. Jules H van Binsbergen & Xiao Han & Alejandro Lopez-Lira, 2023. "Man versus Machine Learning: The Term Structure of Earnings Expectations and Conditional Biases," The Review of Financial Studies, Society for Financial Studies, vol. 36(6), pages 2361-2396.
    16. Nicolas Suhadolnik & Jo Ueyama & Sergio Da Silva, 2023. "Machine Learning for Enhanced Credit Risk Assessment: An Empirical Approach," JRFM, MDPI, vol. 16(12), pages 1-21, November.
    17. Heger, Julia & Min, Aleksey & Zagst, Rudi, 2024. "Analyzing credit spread changes using explainable artificial intelligence," International Review of Financial Analysis, Elsevier, vol. 94(C).
    18. Raymond C. W. Leung & Yu-Man Tam, 2021. "Statistical Arbitrage Risk Premium by Machine Learning," Papers 2103.09987, arXiv.org.
    19. Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2023. "The commodity risk premium and neural networks," Journal of Empirical Finance, Elsevier, vol. 74(C).
    20. Vitor Azevedo & Georg Sebastian Kaiser & Sebastian Mueller, 2023. "Stock market anomalies and machine learning across the globe," Journal of Asset Management, Palgrave Macmillan, vol. 24(5), pages 419-441, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.