Deep Learning for Financial Applications : A Survey
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017.
"Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500,"
European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2016. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," FAU Discussion Papers in Economics 03/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Christopher Krauss & Xuan Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01515120, HAL.
- Samuel Ronnqvist & Peter Sarlin, 2015. "Detect & Describe: Deep learning of bank stress in the news," Papers 1507.07870, arXiv.org.
- Dat Thanh Tran & Martin Magris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2017. "Tensor Representation in High-Frequency Financial Data for Price Change Prediction," Papers 1709.01268, arXiv.org, revised Nov 2017.
- Yann LeCun & Yoshua Bengio & Geoffrey Hinton, 2015. "Deep learning," Nature, Nature, vol. 521(7553), pages 436-444, May.
- Tim Loughran & Bill Mcdonald, 2016. "Textual Analysis in Accounting and Finance: A Survey," Journal of Accounting Research, Wiley Blackwell, vol. 54(4), pages 1187-1230, September.
- Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
- Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Papers 1803.06917, arXiv.org.
- Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
- David W. Lu, 2017. "Agent Inspired Trading Using Recurrent Reinforcement Learning and LSTM Neural Networks," Papers 1707.07338, arXiv.org.
- Sang Il Lee & Seong Joon Yoo, 2017. "Threshold-Based Portfolio: The Role of the Threshold and Its Applications," Papers 1709.09822, arXiv.org, revised Aug 2018.
- Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
- Omer Berat Sezer & Mehmet Ugur Gudelek & Ahmet Murat Ozbayoglu, 2019. "Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019," Papers 1911.13288, arXiv.org.
- Paola Cerchiello & Giancarlo Nicola & Samuel Rönnqvist & Peter Sarlin, 2017. "Deep Learning Bank Distress from News and Numerical Financial Data," DEM Working Papers Series 140, University of Pavia, Department of Economics and Management.
- Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
- Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Working Papers hal-01754054, HAL.
- Kearney, Colm & Liu, Sha, 2014.
"Textual sentiment in finance: A survey of methods and models,"
International Review of Financial Analysis, Elsevier, vol. 33(C), pages 171-185.
- Colm Kearney & Sha Liu, 2014. "Textual sentiment in finance: A survey of methods and models," Open Access publications 10197/8213, Research Repository, University College Dublin.
- Stephan K. Chalup & Andreas Mitschele, 2008. "Kernel Methods in Finance," International Handbooks on Information Systems, in: Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), Handbook on Information Technology in Finance, chapter 27, pages 655-687, Springer.
- Matthew F Dixon, 2017. "Sequence Classification of the Limit Order Book using Recurrent Neural Networks," Papers 1707.05642, arXiv.org.
- Ariel Navon & Yosi Keller, 2017. "Financial Time Series Prediction Using Deep Learning," Papers 1711.04174, arXiv.org.
- Justin Sirignano, 2016. "Deep Learning for Limit Order Books," Papers 1601.01987, arXiv.org, revised Jul 2016.
- LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
- Justin Sirignano & Apaar Sadhwani & Kay Giesecke, 2016. "Deep Learning for Mortgage Risk," Papers 1607.02470, arXiv.org, revised Mar 2018.
- Xi Zhang & Yunjia Zhang & Senzhang Wang & Yuntao Yao & Binxing Fang & Philip S. Yu, 2018. "Improving Stock Market Prediction via Heterogeneous Information Fusion," Papers 1801.00588, arXiv.org.
- Christopher Krauss & Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01768895, HAL.
- Vadim Sokolov, 2017. "Discussion of ‘Deep learning for finance: deep portfolios’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 16-18, January.
- Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
- Joonhyuck Lee & Dongsik Jang & Sangsung Park, 2017. "Deep Learning-Based Corporate Performance Prediction Model Considering Technical Capability," Sustainability, MDPI, vol. 9(6), pages 1-12, May.
- Zhipeng Liang & Hao Chen & Junhao Zhu & Kangkang Jiang & Yanran Li, 2018. "Adversarial Deep Reinforcement Learning in Portfolio Management," Papers 1808.09940, arXiv.org, revised Nov 2018.
- Fethi, Meryem Duygun & Pasiouras, Fotios, 2010. "Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey," European Journal of Operational Research, Elsevier, vol. 204(2), pages 189-198, July.
- XingYu Fu & JinHong Du & YiFeng Guo & MingWen Liu & Tao Dong & XiuWen Duan, 2018. "A Machine Learning Framework for Stock Selection," Papers 1806.01743, arXiv.org, revised Aug 2018.
- Jiaqi Chen & Michael Tindall & Wenbo Wu, 2016. "Hedge Fund Return Prediction and Fund Selection: A Machine-Learning Approach," Occasional Papers 16-4, Federal Reserve Bank of Dallas.
- Guosheng Hu & Yuxin Hu & Kai Yang & Zehao Yu & Flood Sung & Zhihong Zhang & Fei Xie & Jianguo Liu & Neil Robertson & Timothy Hospedales & Qiangwei Miemie, 2017. "Deep Stock Representation Learning: From Candlestick Charts to Investment Decisions," Papers 1709.03803, arXiv.org, revised Feb 2018.
- Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Omer Berat Sezer & Mehmet Ugur Gudelek & Ahmet Murat Ozbayoglu, 2019. "Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019," Papers 1911.13288, arXiv.org.
- Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
- Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
- Liyang Tang, 2020. "Application of Nonlinear Autoregressive with Exogenous Input (NARX) neural network in macroeconomic forecasting, national goal setting and global competitiveness assessment," Papers 2005.08735, arXiv.org.
- Schnaubelt, Matthias & Seifert, Oleg, 2020. "Valuation ratios, surprises, uncertainty or sentiment: How does financial machine learning predict returns from earnings announcements?," FAU Discussion Papers in Economics 04/2020, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Huck, Nicolas, 2019. "Large data sets and machine learning: Applications to statistical arbitrage," European Journal of Operational Research, Elsevier, vol. 278(1), pages 330-342.
- Zihao Zhang & Stefan Zohren & Stephen Roberts, 2018. "DeepLOB: Deep Convolutional Neural Networks for Limit Order Books," Papers 1808.03668, arXiv.org, revised Jan 2020.
- Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
- Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
- Rubesam, Alexandre, 2022.
"Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market,"
Emerging Markets Review, Elsevier, vol. 51(PB).
- Alexandre Rubesam, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Post-Print hal-03707365, HAL.
- Fabian Waldow & Matthias Schnaubelt & Christopher Krauss & Thomas Günter Fischer, 2021. "Machine Learning in Futures Markets," JRFM, MDPI, vol. 14(3), pages 1-14, March.
- Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
- Jungsik Hwang, 2020. "Modeling Financial Time Series using LSTM with Trainable Initial Hidden States," Papers 2007.06848, arXiv.org.
- Qi Zhao, 2020. "A Deep Learning Framework for Predicting Digital Asset Price Movement from Trade-by-trade Data," Papers 2010.07404, arXiv.org.
- Paul Bilokon & Yitao Qiu, 2023. "Transformers versus LSTMs for electronic trading," Papers 2309.11400, arXiv.org.
- Hyungjun Park & Min Kyu Sim & Dong Gu Choi, 2019. "An intelligent financial portfolio trading strategy using deep Q-learning," Papers 1907.03665, arXiv.org, revised Nov 2019.
- Iwao Maeda & David deGraw & Michiharu Kitano & Hiroyasu Matsushima & Kiyoshi Izumi & Hiroki Sakaji & Atsuo Kato, 2020. "Latent Segmentation of Stock Trading Strategies Using Multi-Modal Imitation Learning," JRFM, MDPI, vol. 13(11), pages 1-12, October.
- Kolesnikova, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2019. "Can Deep Learning Predict Risky Retail Investors? A Case Study in Financial Risk Behavior Forecasting," IRTG 1792 Discussion Papers 2019-023, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Durand, Pierre & Le Quang, Gaëtan, 2022. "Banks to basics! Why banking regulation should focus on equity," European Journal of Operational Research, Elsevier, vol. 301(1), pages 349-372.
- Ajitha Kumari Vijayappan Nair Biju & Ann Susan Thomas & J Thasneem, 2024. "Examining the research taxonomy of artificial intelligence, deep learning & machine learning in the financial sphere—a bibliometric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(1), pages 849-878, February.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2020-03-02 (Big Data)
- NEP-CMP-2020-03-02 (Computational Economics)
- NEP-FMK-2020-03-02 (Financial Markets)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2002.05786. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.