IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v57y2021i1d10.1007_s10614-020-10042-0.html
   My bibliography  Save this article

Explainable Machine Learning in Credit Risk Management

Author

Listed:
  • Niklas Bussmann

    (University of Pavia)

  • Paolo Giudici

    (University of Pavia)

  • Dimitri Marinelli

    (FinNet-Project)

  • Jochen Papenbrock

    (FIRAMIS)

Abstract

The paper proposes an explainable Artificial Intelligence model that can be used in credit risk management and, in particular, in measuring the risks that arise when credit is borrowed employing peer to peer lending platforms. The model applies correlation networks to Shapley values so that Artificial Intelligence predictions are grouped according to the similarity in the underlying explanations. The empirical analysis of 15,000 small and medium companies asking for credit reveals that both risky and not risky borrowers can be grouped according to a set of similar financial characteristics, which can be employed to explain their credit score and, therefore, to predict their future behaviour.

Suggested Citation

  • Niklas Bussmann & Paolo Giudici & Dimitri Marinelli & Jochen Papenbrock, 2021. "Explainable Machine Learning in Credit Risk Management," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 203-216, January.
  • Handle: RePEc:kap:compec:v:57:y:2021:i:1:d:10.1007_s10614-020-10042-0
    DOI: 10.1007/s10614-020-10042-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-020-10042-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-020-10042-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871, November.
    2. Bracke, Philippe & Datta, Anupam & Jung, Carsten & Sen, Shayak, 2019. "Machine learning explainability in finance: an application to default risk analysis," Bank of England working papers 816, Bank of England.
    3. Giudici, Paolo, 2018. "Financial data science," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 160-164.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun-Xiao Nie, 2021. "Studying the correlation structure based on market geometry," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(2), pages 411-441, April.
    2. Lyócsa, Štefan & Výrost, Tomáš & Baumöhl, Eduard, 2019. "Return spillovers around the globe: A network approach," Economic Modelling, Elsevier, vol. 77(C), pages 133-146.
    3. Park, Sangjin & Yang, Jae-Suk, 2021. "Relationships between capital flow and economic growth: A network analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 72(C).
    4. Sabrina Camargo & Silvio M. Duarte Queiros & Celia Anteneodo, 2013. "Bridging stylized facts in finance and data non-stationarities," Papers 1302.3197, arXiv.org, revised May 2013.
    5. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    6. L'ester Alfonso & Danahe E. Garcia-Ramirez & Ricardo Mansilla & C'esar A. Terrero-Escalante, 2020. "Analysis of intra-day fluctuations in the Mexican financial market index," Papers 2002.05697, arXiv.org.
    7. Laleh Tafakori & Armin Pourkhanali & Riccardo Rastelli, 2022. "Measuring systemic risk and contagion in the European financial network," Empirical Economics, Springer, vol. 63(1), pages 345-389, July.
    8. Liu, Chao & Fan, Yixin & Xie, Qiwei & Wang, Chao, 2022. "Market-based versus bank-based financial structure in China: From the perspective of financial risk," Structural Change and Economic Dynamics, Elsevier, vol. 62(C), pages 24-39.
    9. Alves, L.G.A. & Ribeiro, H.V. & Lenzi, E.K. & Mendes, R.S., 2014. "Empirical analysis on the connection between power-law distributions and allometries for urban indicators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 175-182.
    10. Muchnik, Lev & Bunde, Armin & Havlin, Shlomo, 2009. "Long term memory in extreme returns of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4145-4150.
    11. Zhang, Chao & Huang, Lu, 2010. "A quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5769-5775.
    12. Cuniberti, Gianaurelio & Raberto, Marco & Scalas, Enrico, 1999. "Correlations in the bond-future market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 269(1), pages 90-97.
    13. Michelle B Graczyk & Sílvio M Duarte Queirós, 2017. "Intraday seasonalities and nonstationarity of trading volume in financial markets: Collective features," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-23, July.
    14. Bertram, William K., 2005. "A threshold model for Australian Stock Exchange equities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(3), pages 561-576.
    15. Kutner, Ryszard & Wysocki, Krzysztof, 1999. "Applications of statistical mechanics to non-brownian random motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 274(1), pages 67-84.
    16. Shapoval, A., 2010. "Prediction problem for target events based on the inter-event waiting time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5145-5154.
    17. Dyakonova, Ludmila & Konstantinov, Alexey, 2024. "Approaches to risk analysis in the financial sector based on machine learning and artificial intelligence methods," MPRA Paper 122941, University Library of Munich, Germany.
    18. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2011. "A copula–multifractal volatility hedging model for CSI 300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4260-4272.
    19. Marc Potters & Jean-Philippe Bouchaud, 2002. "More statistical properties of order books and price impact," Science & Finance (CFM) working paper archive 0210710, Science & Finance, Capital Fund Management.
    20. Basnarkov, Lasko & Stojkoski, Viktor & Utkovski, Zoran & Kocarev, Ljupco, 2019. "Correlation patterns in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1026-1037.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:57:y:2021:i:1:d:10.1007_s10614-020-10042-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.