Is the diurnal pattern sufficient to explain intraday variation in volatility? A nonparametric assessment
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jeconom.2018.03.016
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dette, Holger & Golosnoy, Vasyl & Kellermann, Janosch, 2022. "Correcting Intraday Periodicity Bias in Realized Volatility Measures," Econometrics and Statistics, Elsevier, vol. 23(C), pages 36-52.
- Kolokolov, Aleksey & Livieri, Giulia & Pirino, Davide, 2020. "Statistical inferences for price staleness," Journal of Econometrics, Elsevier, vol. 218(1), pages 32-81.
- Clinet, Simon & Potiron, Yoann, 2019.
"Testing if the market microstructure noise is fully explained by the informational content of some variables from the limit order book,"
Journal of Econometrics, Elsevier, vol. 209(2), pages 289-337.
- Simon Clinet & Yoann Potiron, 2017. "Testing if the market microstructure noise is fully explained by the informational content of some variables from the limit order book," Papers 1709.02502, arXiv.org, revised Feb 2019.
- Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023.
"The contribution of jump signs and activity to forecasting stock price volatility,"
Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
- , 2019. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 1902, Federal Reserve Bank of Dallas, revised 17 Dec 2022.
- Ruijun Bu & Rodrigo Hizmeri & Marwan Izzeldin & Anthony Murphy & Mike G. Tsionas, 2021. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 202109, University of Liverpool, Department of Economics.
- Qiang Liu & Zhi Liu & Chuanhai Zhang, 2020. "Heteroscedasticity test of high-frequency data with jumps and microstructure noise," Papers 2010.07659, arXiv.org.
- Li, Yingying & Liu, Guangying & Zhang, Zhiyuan, 2022. "Volatility of volatility: Estimation and tests based on noisy high frequency data with jumps," Journal of Econometrics, Elsevier, vol. 229(2), pages 422-451.
- Yinfen Tang & Tao Su & Zhiyuan Zhang, 2022. "Distribution-free specification test for volatility function based on high-frequency data with microstructure noise," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(8), pages 977-1022, November.
- Hiroyuki Kawakatsu, 2022. "Local projection variance impulse response," Empirical Economics, Springer, vol. 62(3), pages 1219-1244, March.
- Holger Dette & Vasyl Golosnoy & Janosch Kellermann, 2023. "The effect of intraday periodicity on realized volatility measures," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(3), pages 315-342, April.
- Qiang Liu & Zhi Liu, 2022. "Estimating spot volatility under infinite variation jumps with dependent market microstructure noise," Papers 2205.15738, arXiv.org, revised Feb 2023.
- Zhang, Chuanhai & Liu, Zhi & Liu, Qiang, 2021. "Jumps at ultra-high frequency: Evidence from the Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
- Cui, Wenhao & Hu, Jie & Wang, Jiandong, 2024. "Nonparametric estimation for high-frequency data incorporating trading information," Journal of Econometrics, Elsevier, vol. 240(1).
- Dinesh Gajurel & Biplob Chowdhury, 2021. "Realized Volatility, Jump and Beta: evidence from Canadian Stock Market," Applied Economics, Taylor & Francis Journals, vol. 53(55), pages 6376-6397, November.
- Guangying Liu & Meiyao Liu & Jinguan Lin, 2022. "Testing the volatility jumps based on the high frequency data," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(5), pages 669-694, September.
More about this item
Keywords
Bipower variation; Bootstrapping; Diurnal variation; High-frequency data; Microstructure noise; Pre-averaging; Time-varying volatility;All these keywords.
JEL classification:
- C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
- C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:205:y:2018:i:2:p:336-362. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.