IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v92y2015ip1p117-127.html
   My bibliography  Save this article

Simulation of fluid heating in combustion chamber waterwalls of boilers for supercritical steam parameters

Author

Listed:
  • Zima, Wiesław
  • Nowak-Ocłoń, Marzena
  • Ocłoń, Paweł

Abstract

This paper proposes a mathematical model with distributed parameters that allows to simulate the heat transfer processes in combustion chamber waterwalls of supercritical steam boilers. The model comprises solving the one-dimensional mass, momentum and energy conservation equations. The Forward Time Backward Space scheme is applied to discretize the governing equations. Two types of computational verification are performed for the proposed model. At first the model is validated with the analytical solution. The computational accuracy of the proposed model was tested for different time steps and grid size. At second, the results produced by the model were compared with those obtained when the Crank-Nicolson scheme is used to discretize the energy equation. In this case of results comparison the fluid flow and heat transfer phenomena were modeled for spirally wounded waterwall tubes of the combustion chamber in a supercritical boiler. A good agreement was found between the results produced by the proposed model and those obtained by using the analytical and Crank-Nicolson approaches. Therefore, the proposed model can be regarded as a useful tool for the design and monitoring of this type of heated surfaces. Moreover, the model can be applied in power units simulators.

Suggested Citation

  • Zima, Wiesław & Nowak-Ocłoń, Marzena & Ocłoń, Paweł, 2015. "Simulation of fluid heating in combustion chamber waterwalls of boilers for supercritical steam parameters," Energy, Elsevier, vol. 92(P1), pages 117-127.
  • Handle: RePEc:eee:energy:v:92:y:2015:i:p1:p:117-127
    DOI: 10.1016/j.energy.2015.02.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215002959
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.02.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kotowicz, Janusz & Michalski, Sebastian, 2014. "Efficiency analysis of a hard-coal-fired supercritical power plant with a four-end high-temperature membrane for air separation," Energy, Elsevier, vol. 64(C), pages 109-119.
    2. Li, Yuanyuan & Zhou, Luyao & Xu, Gang & Fang, Yaxiong & Zhao, Shifei & Yang, Yongping, 2014. "Thermodynamic analysis and optimization of a double reheat system in an ultra-supercritical power plant," Energy, Elsevier, vol. 74(C), pages 202-214.
    3. Bartela, Łukasz & Skorek-Osikowska, Anna & Kotowicz, Janusz, 2014. "Economic analysis of a supercritical coal-fired CHP plant integrated with an absorption carbon capture installation," Energy, Elsevier, vol. 64(C), pages 513-523.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Momani, Ahmad & Mohamed, Omar & Abu Elhaija, Wejdan, 2022. "Multiple processes modeling and identification for a cleaner supercritical power plant via Grey Wolf Optimizer," Energy, Elsevier, vol. 252(C).
    2. Omar Mohamed & Ashraf Khalil & Jihong Wang, 2020. "Modeling and Control of Supercritical and Ultra-Supercritical Power Plants: A Review," Energies, MDPI, vol. 13(11), pages 1-23, June.
    3. Grądziel, Sławomir, 2019. "Analysis of thermal and flow phenomena in natural circulation boiler evaporator," Energy, Elsevier, vol. 172(C), pages 881-891.
    4. Zima, Wiesław & Nowak-Ocłoń, Marzena & Ocłoń, Paweł, 2018. "Novel online simulation-ready models of conjugate heat transfer in combustion chamber waterwall tubes of supercritical power boilers," Energy, Elsevier, vol. 148(C), pages 809-823.
    5. Boyu Deng & Tuo Zhou & Shuangming Zhang & Haowen Wu & Xiaoguo Jiang & Man Zhang & Hairui Yang, 2022. "Safety Analysis on the Heating Surfaces in the 660 MW Ultra-Supercritical CFB Boiler under Sudden Electricity Failure," Energies, MDPI, vol. 15(21), pages 1-15, October.
    6. Deng, Boyu & Zhang, Man & Lyu, Junfu & Li, Shaohua & Yang, Hairui, 2019. "Safety analysis on the water wall in the 350 MW supercritical CFB boiler under sudden electricity failure," Energy, Elsevier, vol. 189(C).
    7. Yang, D.L. & Tang, G.H. & Fan, Y.H. & Li, X.L. & Wang, S.Q., 2020. "Arrangement and three-dimensional analysis of cooling wall in 1000 MW S–CO2 coal-fired boiler," Energy, Elsevier, vol. 197(C).
    8. Majdak, Marek & Grądziel, Sławomir, 2020. "Influence of thermal and flow conditions on the thermal stresses distribution in the evaporator tubes," Energy, Elsevier, vol. 209(C).
    9. Zima, Wiesław, 2019. "Simulation of steam superheater operation under conditions of pressure decrease," Energy, Elsevier, vol. 172(C), pages 932-944.
    10. Zhou, Jing & Zhu, Meng & Xu, Kai & Su, Sheng & Tang, Yifang & Hu, Song & Wang, Yi & Xu, Jun & He, Limo & Xiang, Jun, 2020. "Key issues and innovative double-tangential circular boiler configurations for the 1000 MW coal-fired supercritical carbon dioxide power plant," Energy, Elsevier, vol. 199(C).
    11. Ge, Xueli & Zhang, Zhongxiao & Fan, Haojie & Zhang, Jian & Bi, Degui, 2019. "Unsteady-state heat transfer characteristics of spiral water wall tube in advanced-ultra-supercritical boilers from experiments and distributed parameter model," Energy, Elsevier, vol. 189(C).
    12. Taler, Jan & Zima, Wiesław & Ocłoń, Paweł & Grądziel, Sławomir & Taler, Dawid & Cebula, Artur & Jaremkiewicz, Magdalena & Korzeń, Anna & Cisek, Piotr & Kaczmarski, Karol & Majewski, Karol, 2019. "Mathematical model of a supercritical power boiler for simulating rapid changes in boiler thermal loading," Energy, Elsevier, vol. 175(C), pages 580-592.
    13. Yang, D.L. & Tang, G.H. & Li, X.L. & Fan, Y.H., 2022. "Capacity-dependent configurations of S–CO2 coal-fired boiler by overall analysis with a unified model," Energy, Elsevier, vol. 245(C).
    14. Zhou, Jing & Zhu, Meng & Su, Sheng & Chen, Lei & Xu, Jun & Hu, Song & Wang, Yi & Jiang, Long & Zhong, Wenqi & Xiang, Jun, 2020. "Numerical analysis and modified thermodynamic calculation methods for the furnace in the 1000 MW supercritical CO2 coal-fired boiler," Energy, Elsevier, vol. 212(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janusz Kotowicz & Sebastian Michalski & Mateusz Brzęczek, 2019. "The Characteristics of a Modern Oxy-Fuel Power Plant," Energies, MDPI, vol. 12(17), pages 1-34, September.
    2. Braimakis, Konstantinos & Magiri-Skouloudi, Despina & Grimekis, Dimitrios & Karellas, Sotirios, 2020. "Εnergy-exergy analysis of ultra-supercritical biomass-fuelled steam power plants for industrial CHP, district heating and cooling," Renewable Energy, Elsevier, vol. 154(C), pages 252-269.
    3. Bartela, Łukasz & Skorek-Osikowska, Anna & Kotowicz, Janusz, 2015. "An analysis of the investment risk related to the integration of a supercritical coal-fired combined heat and power plant with an absorption installation for CO2 separation," Applied Energy, Elsevier, vol. 156(C), pages 423-435.
    4. Kotowicz, Janusz & Michalski, Sebastian, 2015. "Influence of four-end HTM (high temperature membrane) parameters on the thermodynamic and economic characteristics of a supercritical power plant," Energy, Elsevier, vol. 81(C), pages 662-673.
    5. Kotowicz, Janusz & Michalski, Sebastian, 2016. "Thermodynamic and economic analysis of a supercritical and an ultracritical oxy-type power plant without and with waste heat recovery," Applied Energy, Elsevier, vol. 179(C), pages 806-820.
    6. Monge-Palacios, M. & Grajales-González, E. & Sarathy, S. Mani, 2023. "Methanol oxy-combustion and supercritical water oxidation: A ReaxFF molecular dynamics study," Energy, Elsevier, vol. 283(C).
    7. Meng Yue & Guoqian Ma & Yuetao Shi, 2020. "Analysis of Gas Recirculation Influencing Factors of a Double Reheat 1000 MW Unit with the Reheat Steam Temperature under Control," Energies, MDPI, vol. 13(16), pages 1-22, August.
    8. José Luis Míguez & Jacobo Porteiro & Raquel Pérez-Orozco & Miguel Ángel Gómez, 2018. "Technology Evolution in Membrane-Based CCS," Energies, MDPI, vol. 11(11), pages 1-18, November.
    9. Janusz-Szymańska, Katarzyna & Dryjańska, Aleksandra, 2015. "Possibilities for improving the thermodynamic and economic characteristics of an oxy-type power plant with a cryogenic air separation unit," Energy, Elsevier, vol. 85(C), pages 45-61.
    10. Ziółkowski, Paweł & Stasiak, Kamil & Amiri, Milad & Mikielewicz, Dariusz, 2023. "Negative carbon dioxide gas power plant integrated with gasification of sewage sludge," Energy, Elsevier, vol. 262(PB).
    11. Yu, Jianxi & Liu, Pei & Li, Zheng, 2021. "Data reconciliation of the thermal system of a double reheat power plant for thermal calculation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    12. Turi, Davide Maria & Chiesa, Paolo & Macchi, Ennio & Ghoniem, Ahmed F., 2016. "High fidelity model of the oxygen flux across ion transport membrane reactor: Mechanism characterization using experimental data," Energy, Elsevier, vol. 96(C), pages 127-141.
    13. Mikielewicz, Dariusz & Wajs, Jan & Ziółkowski, Paweł & Mikielewicz, Jarosław, 2016. "Utilisation of waste heat from the power plant by use of the ORC aided with bleed steam and extra source of heat," Energy, Elsevier, vol. 97(C), pages 11-19.
    14. Wang, Di & Xie, Xinyan & Wang, Chaonan & Zhou, Yunlong & Yang, Mei & Li, Xiaoli & Liu, Deying, 2021. "Thermo-economic analysis on an improved coal-fired power system integrated with S–CO2 brayton cycle," Energy, Elsevier, vol. 220(C).
    15. Habib, Mohamed A. & Nemitallah, Medhat A., 2015. "Design of an ion transport membrane reactor for application in fire tube boilers," Energy, Elsevier, vol. 81(C), pages 787-801.
    16. Wang, Zhu & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Chong, Daotong & Yan, Junjie, 2020. "Flexibility and efficiency enhancement for double-reheat coal-fired power plants by control optimization considering boiler heat storage," Energy, Elsevier, vol. 201(C).
    17. Cai, Liu-xi & Wang, Shun-sen & Mao, Jing-ru & Di, Juan & Feng, Zhen-ping, 2015. "The influence of nozzle chamber structure and partial-arc admission on the erosion characteristics of solid particles in the control stage of a supercritical steam turbine," Energy, Elsevier, vol. 82(C), pages 341-352.
    18. Skorek-Osikowska, Anna & Bartela, Łukasz & Kotowicz, Janusz & Sobolewski, Aleksander & Iluk, Tomasz & Remiorz, Leszek, 2014. "The influence of the size of the CHP (combined heat and power) system integrated with a biomass fueled gas generator and piston engine on the thermodynamic and economic effectiveness of electricity an," Energy, Elsevier, vol. 67(C), pages 328-340.
    19. Abdul Manaf, Norhuda & Qadir, Abdul & Abbas, Ali, 2016. "Temporal multiscalar decision support framework for flexible operation of carbon capture plants targeting low-carbon management of power plant emissions," Applied Energy, Elsevier, vol. 169(C), pages 912-926.
    20. Kler, Aleksandr M. & Zharkov, Pavel V. & Epishkin, Nikolai O., 2019. "Parametric optimization of supercritical power plants using gradient methods," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:92:y:2015:i:p1:p:117-127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.