IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v189y2019ics0360544219320596.html
   My bibliography  Save this article

Safety analysis on the water wall in the 350 MW supercritical CFB boiler under sudden electricity failure

Author

Listed:
  • Deng, Boyu
  • Zhang, Man
  • Lyu, Junfu
  • Li, Shaohua
  • Yang, Hairui

Abstract

The necessity of setting up the emergency water supply system in the supercritical circulating fluidized bed (CFB) boiler is still in controversy in the industry. Based on the research methods in the previous literature and the operating experience, this paper proposed three possible emergency strategies for sudden electricity failure. And by analyzing the physical process in the furnace under sudden electricity failure condition, a mathematical model consisted of the mass and energy conservation equation was built, and the accuracy of this model was validated by the experiment data from a supercritical CO2 experimental system. With the help of the model, this paper can quantitatively predict the dynamic process of the working fluid concerning temperature, pressure, and mass in the water wall in the 350 MW supercritical CFB boiler under the above three emergency strategies. In addition, an estimation of the pipe-broken time for the water wall under such condition was given. Results showed that the longest pipe-broken time was about 52 mins considering the pressure effect. Thus this paper can draw a preliminary conclusion that setting up an emergency water supply system was not a necessity in the 350 MW supercritical CFB boiler.

Suggested Citation

  • Deng, Boyu & Zhang, Man & Lyu, Junfu & Li, Shaohua & Yang, Hairui, 2019. "Safety analysis on the water wall in the 350 MW supercritical CFB boiler under sudden electricity failure," Energy, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219320596
    DOI: 10.1016/j.energy.2019.116364
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219320596
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116364?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zima, Wiesław, 2019. "Simulation of rapid increase in the steam mass flow rate at a supercritical power boiler outlet," Energy, Elsevier, vol. 173(C), pages 995-1005.
    2. Zhu, Shahong & Zhang, Man & Huang, Yiqun & Wu, Yuxin & Yang, Hairui & Lyu, Junfu & Gao, Xinyu & Wang, Fengjun & Yue, Guangxi, 2019. "Thermodynamic analysis of a 660 MW ultra-supercritical CFB boiler unit," Energy, Elsevier, vol. 173(C), pages 352-363.
    3. Lee, See Hoon & Lee, Tae Hee & Jeong, Sang Mun & Lee, Jong Min, 2019. "Economic analysis of a 600 mwe ultra supercritical circulating fluidized bed power plant based on coal tax and biomass co-combustion plans," Renewable Energy, Elsevier, vol. 138(C), pages 121-127.
    4. Taler, Jan & Zima, Wiesław & Ocłoń, Paweł & Grądziel, Sławomir & Taler, Dawid & Cebula, Artur & Jaremkiewicz, Magdalena & Korzeń, Anna & Cisek, Piotr & Kaczmarski, Karol & Majewski, Karol, 2019. "Mathematical model of a supercritical power boiler for simulating rapid changes in boiler thermal loading," Energy, Elsevier, vol. 175(C), pages 580-592.
    5. Zima, Wiesław & Nowak-Ocłoń, Marzena & Ocłoń, Paweł, 2015. "Simulation of fluid heating in combustion chamber waterwalls of boilers for supercritical steam parameters," Energy, Elsevier, vol. 92(P1), pages 117-127.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zima, Wiesław & Grądziel, Sławomir & Cebula, Artur & Rerak, Monika & Kozak-Jagieła, Ewa & Pilarczyk, Marcin, 2023. "Mathematical model of a power boiler operation under rapid thermal load changes," Energy, Elsevier, vol. 263(PC).
    2. Boyu Deng & Tuo Zhou & Shuangming Zhang & Haowen Wu & Xiaoguo Jiang & Man Zhang & Hairui Yang, 2022. "Safety Analysis on the Heating Surfaces in the 660 MW Ultra-Supercritical CFB Boiler under Sudden Electricity Failure," Energies, MDPI, vol. 15(21), pages 1-15, October.
    3. Yan, Jin & Lu, Xiaofeng & Song, Yangfan & Zheng, Xiong & Lei, Xiujian & Liu, Zhuo & Fan, Xuchen & Liu, Congcong, 2021. "A comprehensive understanding of the non-uniform characteristics and regulation mechanism of six external loops in a 600 MW supercritical CFB boiler," Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boyu Deng & Tuo Zhou & Shuangming Zhang & Haowen Wu & Xiaoguo Jiang & Man Zhang & Hairui Yang, 2022. "Safety Analysis on the Heating Surfaces in the 660 MW Ultra-Supercritical CFB Boiler under Sudden Electricity Failure," Energies, MDPI, vol. 15(21), pages 1-15, October.
    2. Zima, Wiesław & Taler, Jan & Grądziel, Sławomir & Trojan, Marcin & Cebula, Artur & Ocłoń, Paweł & Dzierwa, Piotr & Taler, Dawid & Rerak, Monika & Majdak, Marek & Korzeń, Anna & Skrzyniowska, Dorota, 2022. "Thermal calculations of a natural circulation power boiler operating under a wide range of loads," Energy, Elsevier, vol. 261(PB).
    3. Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Chong, Daotong & Yan, Junjie, 2020. "Entropy generation distribution characteristics of a supercritical boiler superheater during transient processes," Energy, Elsevier, vol. 201(C).
    4. Ioannis Avagianos & Dimitrios Rakopoulos & Sotirios Karellas & Emmanouil Kakaras, 2020. "Review of Process Modeling of Solid-Fuel Thermal Power Plants for Flexible and Off-Design Operation," Energies, MDPI, vol. 13(24), pages 1-41, December.
    5. Zhou, Jing & Zhu, Meng & Su, Sheng & Chen, Lei & Xu, Jun & Hu, Song & Wang, Yi & Jiang, Long & Zhong, Wenqi & Xiang, Jun, 2020. "Numerical analysis and modified thermodynamic calculation methods for the furnace in the 1000 MW supercritical CO2 coal-fired boiler," Energy, Elsevier, vol. 212(C).
    6. Majdak, Marek & Grądziel, Sławomir, 2020. "Influence of thermal and flow conditions on the thermal stresses distribution in the evaporator tubes," Energy, Elsevier, vol. 209(C).
    7. Seo, Su Been & Kim, Hyung Woo & Kang, Seo Yeong & Go, Eun Sol & Keel, Sang In & Lee, See Hoon, 2021. "Techno-economic comparison between air-fired and oxy-fuel circulating fluidized bed power plants with ultra-supercritical cycle," Energy, Elsevier, vol. 233(C).
    8. Yang, D.L. & Tang, G.H. & Fan, Y.H. & Li, X.L. & Wang, S.Q., 2020. "Arrangement and three-dimensional analysis of cooling wall in 1000 MW S–CO2 coal-fired boiler," Energy, Elsevier, vol. 197(C).
    9. Braimakis, Konstantinos & Magiri-Skouloudi, Despina & Grimekis, Dimitrios & Karellas, Sotirios, 2020. "Εnergy-exergy analysis of ultra-supercritical biomass-fuelled steam power plants for industrial CHP, district heating and cooling," Renewable Energy, Elsevier, vol. 154(C), pages 252-269.
    10. Fang, Lide & Liu, Yueyuan & Zheng, Meng & Liu, Xu & Lan, Kang & Wang, Fan & Yan, Xiaoli, 2023. "A new type of velocity averaging tube vortex flow sensor and measurement model of mass flow rate," Energy, Elsevier, vol. 283(C).
    11. Omar Mohamed & Ashraf Khalil & Jihong Wang, 2020. "Modeling and Control of Supercritical and Ultra-Supercritical Power Plants: A Review," Energies, MDPI, vol. 13(11), pages 1-23, June.
    12. Grądziel, Sławomir, 2019. "Analysis of thermal and flow phenomena in natural circulation boiler evaporator," Energy, Elsevier, vol. 172(C), pages 881-891.
    13. Liu, Zefeng & Wang, Chaoyang & Fan, Jianlin & Liu, Ming & Xing, Yong & Yan, Junjie, 2024. "Enhancing the flexibility and stability of coal-fired power plants by optimizing control schemes of throttling high-pressure extraction steam," Energy, Elsevier, vol. 288(C).
    14. Zhao, Tian & Sun, Qing-Han & Li, Xia & Xin, Yong-Lin & Chen, Qun, 2023. "A novel transfer matrix-based method for steady-state modeling and analysis of thermal systems," Energy, Elsevier, vol. 281(C).
    15. Guo Li & Xiangyu Tao & Zonglong Zhang & Chen Yang & Qigang Deng & Li Nie & Wei He & Weicheng Li & Jiayi Lu & Liming Gong, 2023. "Dynamic Simulation of MFT and BT Processes on a 660 MW Ultra-Supercritical Circulating Fluidized Bed Boiler," Energies, MDPI, vol. 16(5), pages 1-13, February.
    16. Vu, Thang Toan & Lim, Young-Il & Song, Daesung & Mun, Tae-Young & Moon, Ji-Hong & Sun, Dowon & Hwang, Yoon-Tae & Lee, Jae-Goo & Park, Young Cheol, 2020. "Techno-economic analysis of ultra-supercritical power plants using air- and oxy-combustion circulating fluidized bed with and without CO2 capture," Energy, Elsevier, vol. 194(C).
    17. Taler, Jan & Trojan, Marcin & Dzierwa, Piotr & Kaczmarski, Karol & Węglowski, Bohdan & Taler, Dawid & Zima, Wiesław & Grądziel, Sławomir & Ocłoń, Paweł & Sobota, Tomasz & Rerak, Monika & Jaremkiewicz,, 2023. "The flexible boiler operation in a wide range of load changes with considering the strength and environmental restrictions," Energy, Elsevier, vol. 263(PB).
    18. Jia, Xiongjie & Sang, Yichen & Li, Yanjun & Du, Wei & Zhang, Guolei, 2022. "Short-term forecasting for supercharged boiler safety performance based on advanced data-driven modelling framework," Energy, Elsevier, vol. 239(PE).
    19. Pavel Ruseljuk & Andrei Dedov & Aleksandr Hlebnikov & Kertu Lepiksaar & Anna Volkova, 2023. "Comparison of District Heating Supply Options for Different CHP Configurations," Energies, MDPI, vol. 16(2), pages 1-14, January.
    20. Marcin Trojan & Piotr Dzierwa & Jan Taler & Mariusz Granda & Karol Kaczmarski & Dawid Taler & Tomasz Sobota, 2023. "Analysis of the Causes of the Emergency Shutdown of Natural Gas-Fired Water Peak Boilers at the Large Municipal Combined Heat and Power Plant," Energies, MDPI, vol. 16(17), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219320596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.