IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v91y2015icp758-771.html
   My bibliography  Save this article

Measurements of soot temperature and KL factor for spray combustion of biomass derived renewable fuels

Author

Listed:
  • Jing, Wei
  • Wu, Zengyang
  • Zhang, Weibo
  • Fang, Tiegang

Abstract

Soot concentration (KL factor) and soot temperature were measured in a constant volume combustion chamber for a new biomass-based biofuel or BTL (biomass to liquid) fuel and regular No.2 diesel. A high-speed camera was employed coupled with two bandpass filters to implement a two-color thermometry method and measure the soot concentration and temperature simultaneously. Ambient conditions were set as follows: three temperatures of 800 K, 1000 K, and 1200 K and four O2 concentrations of 10%, 15%, 18% and 21%. The soot KL factor and temperature spatial distributions are presented for 1000 K ambient temperature. More soot is seen in the near-wall regions under the low ambient oxygen conditions while high level soot is observed in the upstream and midstream for the conventional combustion mode. An analysis was then conducted for the quasi-steady state. The results show that BTL combustion generates a lower integrated KL factor and soot temperature compared to diesel fuel under all the experimental conditions. Additionally, low ambient temperature with a moderate O2 concentration benefits BTL more than diesel due to a larger reduction in the integrated KL factor without increasing soot temperature significantly. Finally, the characteristics of the two-color results were further discussed and analyzed.

Suggested Citation

  • Jing, Wei & Wu, Zengyang & Zhang, Weibo & Fang, Tiegang, 2015. "Measurements of soot temperature and KL factor for spray combustion of biomass derived renewable fuels," Energy, Elsevier, vol. 91(C), pages 758-771.
  • Handle: RePEc:eee:energy:v:91:y:2015:i:c:p:758-771
    DOI: 10.1016/j.energy.2015.08.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215011457
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.08.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Ji & Jing, Wei & Roberts, William L. & Fang, Tiegang, 2013. "Soot temperature and KL factor for biodiesel and diesel spray combustion in a constant volume combustion chamber," Applied Energy, Elsevier, vol. 107(C), pages 52-65.
    2. Han, Sangwook & Kim, Jaeheun & Bae, Choongsik, 2014. "Effect of air–fuel mixing quality on characteristics of conventional and low temperature diesel combustion," Applied Energy, Elsevier, vol. 119(C), pages 454-466.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiangrong & Gao, Haobu & Zhao, Luming & Zhang, Zheng & He, Xu & Liu, Fushui, 2016. "Combustion and emission performance of a split injection diesel engine in a double swirl combustion system," Energy, Elsevier, vol. 114(C), pages 1135-1146.
    2. Qi, Dandan & Yang, Kaixuan & Zhao, Xuan & Mei, Danhua & Ying, Yaoyao & Xu, Lei & Tu, Xin & Liu, Dong, 2022. "Comprehensive optical diagnostics for flame behavior and soot emission response to a non-equilibrium plasma," Energy, Elsevier, vol. 255(C).
    3. Chen, Zhanming & Zhao, Pengyun & Zhang, Haitao & Chen, Hao & He, Haibin & Wu, Jie & Wang, Lei & Lou, Hua, 2024. "An optical study on the cross-spray characteristics and combustion flames of automobile engine fueled with diesel/methanol under various injection timings," Energy, Elsevier, vol. 290(C).
    4. Xiaoqing Zhang & Tie Li & Pengfei Ma & Bin Wang, 2017. "Spray Combustion Characteristics and Soot Emission Reduction of Hydrous Ethanol Diesel Emulsion Fuel Using Color-Ratio Pyrometry," Energies, MDPI, vol. 10(12), pages 1-13, December.
    5. Chen, Zhanming & He, Haibin & Wu, Jie & Wang, Lei & Lou, Hua & Zhao, Pengyun & Wang, Tao & Zhang, Haitao & Chen, Hao, 2024. "An experimental study the cross spray and combustion characteristics diesel and ammonia in a constant volume combustion chamber," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raul Payri & José M. García-Oliver & Victor Mendoza & Alberto Viera, 2020. "Analysis of the Influence of Diesel Spray Injection on the Ignition and Soot Formation in Multiple Injection Strategy," Energies, MDPI, vol. 13(13), pages 1-22, July.
    2. Lis Corral-Gómez & Octavio Armas & José A. Soriano & José V. Pastor & José M. García-Oliver & Carlos Micó, 2022. "An Optical Engine Used as a Physical Model for Studies of the Combustion Process Applying a Two-Color Pyrometry Technique," Energies, MDPI, vol. 15(13), pages 1-17, June.
    3. Wang, Yifeng & Yao, Mingfa & Li, Tie & Zhang, Weijing & Zheng, Zunqing, 2016. "A parametric study for enabling reactivity controlled compression ignition (RCCI) operation in diesel engines at various engine loads," Applied Energy, Elsevier, vol. 175(C), pages 389-402.
    4. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Asish K. Sarangi & Gordon P. McTaggart-Cowan & Colin P. Garner, 2022. "The Impact of Fuel Injection Timing and Charge Dilution Rate on Low Temperature Combustion in a Compression Ignition Engine," Energies, MDPI, vol. 16(1), pages 1-21, December.
    6. Shim, Euijoon & Park, Hyunwook & Bae, Choongsik, 2018. "Intake air strategy for low HC and CO emissions in dual-fuel (CNG-diesel) premixed charge compression ignition engine," Applied Energy, Elsevier, vol. 225(C), pages 1068-1077.
    7. Pang, Kar Mun & Karvounis, Nikolas & Walther, Jens Honore & Schramm, Jesper, 2016. "Numerical investigation of soot formation and oxidation processes under large two-stroke marine diesel engine-like conditions using integrated CFD-chemical kinetics," Applied Energy, Elsevier, vol. 169(C), pages 874-887.
    8. Lee, Chia-fon & Pang, Yuxin & Wu, Han & Nithyanandan, Karthik & Liu, Fushui, 2020. "An optical investigation of substitution rates on natural gas/diesel dual-fuel combustion in a diesel engine," Applied Energy, Elsevier, vol. 261(C).
    9. Chen, Zhanming & He, Haibin & Wu, Jie & Wang, Lei & Lou, Hua & Zhao, Pengyun & Wang, Tao & Zhang, Haitao & Chen, Hao, 2024. "An experimental study the cross spray and combustion characteristics diesel and ammonia in a constant volume combustion chamber," Energy, Elsevier, vol. 293(C).
    10. Du, Wei & Zhang, Qiankun & Zhang, Zheng & Lou, Juejue & Bao, Wenhua, 2018. "Effects of injection pressure on ignition and combustion characteristics of impinging diesel spray," Applied Energy, Elsevier, vol. 226(C), pages 1163-1168.
    11. Mansir, Ibrahim B. & Nemitallah, Medhat A. & Habib, Mohamed A. & Khalifa, Atia E., 2018. "Experimental and numerical investigation of flow field and oxy-methane combustion characteristics in a low-power porous-plate reactor," Energy, Elsevier, vol. 160(C), pages 783-795.
    12. Chen, Zhanming & Zhao, Pengyun & Zhang, Haitao & Chen, Hao & He, Haibin & Wu, Jie & Wang, Lei & Lou, Hua, 2024. "An optical study on the cross-spray characteristics and combustion flames of automobile engine fueled with diesel/methanol under various injection timings," Energy, Elsevier, vol. 290(C).
    13. Jingjing He & Hao Chen & Xin Su & Bin Xie & Quanwei Li, 2021. "Combustion Study of Polyoxymethylene Dimethyl Ethers and Diesel Blend Fuels on an Optical Engine," Energies, MDPI, vol. 14(15), pages 1-19, July.
    14. Chen, Hao & Su, Xin & He, Jingjing & Zhang, Peng & Xu, Hongming & Zhou, Chenglong, 2021. "Investigation on combustion characteristics of cyclopentanol/diesel fuel blends in an optical engine," Renewable Energy, Elsevier, vol. 167(C), pages 811-829.
    15. Jeon, Joonho & Park, Sungwook, 2015. "Effects of pilot injection strategies on the flame temperature and soot distributions in an optical CI engine fueled with biodiesel and conventional diesel," Applied Energy, Elsevier, vol. 160(C), pages 581-591.
    16. Qi, Dandan & Yang, Kaixuan & Zhao, Xuan & Mei, Danhua & Ying, Yaoyao & Xu, Lei & Tu, Xin & Liu, Dong, 2022. "Comprehensive optical diagnostics for flame behavior and soot emission response to a non-equilibrium plasma," Energy, Elsevier, vol. 255(C).
    17. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Bhuiya, M.M.K., 2016. "Recent development of biodiesel combustion strategies and modelling for compression ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1068-1086.
    18. Leach, Felix & Ismail, Riyaz & Davy, Martin, 2018. "Engine-out emissions from a modern high speed diesel engine – The importance of Nozzle Tip Protrusion," Applied Energy, Elsevier, vol. 226(C), pages 340-352.
    19. Wu, Shaohua & Yang, Wenming & Xu, Hongpeng & Jiang, Yu, 2019. "Investigation of soot aggregate formation and oxidation in compression ignition engines with a pseudo bi-variate soot model," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Zhong, Wenjun & Pachiannan, Tamilselvan & Li, Zilong & Qian, Yong & Zhang, Yanzhi & Wang, Qian & He, Zhixia & Lu, Xingcai, 2019. "Combustion and emission characteristics of gasoline/hydrogenated catalytic biodiesel blends in gasoline compression ignition engines under different loads of double injection strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:91:y:2015:i:c:p:758-771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.