IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v93y2015ip1p955-962.html
   My bibliography  Save this article

Structurally modified cerium doped hydrotalcite-like precursor as efficient catalysts for hydrogen production from sodium borohydride hydrolysis

Author

Listed:
  • Tamboli, Ashif H.
  • Jadhav, Amol R.
  • Chung, Wook-Jin
  • Kim, Hern

Abstract

Rare earth metal doped HTLPs (hydrotalcites-like precursors) were successfully synthesized by co-precipitation method. The prepared HTLPs were characterized by FE-SEM (field emission scanning electron microscopy), EDX (energy dispersive X-ray spectrometer), Fourier transform infrared spectroscopy (FT-IR), XRD (X-ray diffraction), BET (Brunauer–Emmett–Teller) technique. BET surface analysis results revealed that the surface area of Ce doped HTLPs are quite high than un-doped precursors. Further, the catalytic performance of prepared materials was investigated for hydrogen production from sodium borohydride and it was found that a small amount of Ce doping thoroughly enhance the catalytic activity of HTLPs. BET and XRD results clearly indicated that sizeable change in framework and surface restructuring could occur during cerium doping resulting beneficial effect on its catalytic performances and HTLPs are highly stable even at highly basic conditions. The reaction conditions such as temperature ranging from 25 °C to 75 °C, catalyst amount of 0.08 wt % to 0.16 wt % while molar percent of cerium from 2 mol % to 10 mol %, respectively were investigated. Moreover, it is very convenient to recover the catalyst at the end of reactions; the solid catalyst left could be readily reused for the next consecutive cycles.

Suggested Citation

  • Tamboli, Ashif H. & Jadhav, Amol R. & Chung, Wook-Jin & Kim, Hern, 2015. "Structurally modified cerium doped hydrotalcite-like precursor as efficient catalysts for hydrogen production from sodium borohydride hydrolysis," Energy, Elsevier, vol. 93(P1), pages 955-962.
  • Handle: RePEc:eee:energy:v:93:y:2015:i:p1:p:955-962
    DOI: 10.1016/j.energy.2015.09.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215012694
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.09.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soares Dias, Ana Paula & Bernardo, Joana & Felizardo, Pedro & Neiva Correia, Maria Joana, 2012. "Biodiesel production over thermal activated cerium modified Mg-Al hydrotalcites," Energy, Elsevier, vol. 41(1), pages 344-353.
    2. Arthur, Ernest Evans & Li, Fang & Momade, Francis W.Y. & Kim, Hern, 2014. "Catalytic hydrolysis of ammonia borane for hydrogen generation using cobalt nanocluster catalyst supported on polydopamine functionalized multiwalled carbon nanotube," Energy, Elsevier, vol. 76(C), pages 822-829.
    3. Li, Qiming & Chen, Yingbo & Lee, Dong Joo & Li, Fang & Kim, Hern, 2012. "Preparation of Y-zeolite/CoCl2 doped PVDF composite nanofiber and its application in hydrogen production," Energy, Elsevier, vol. 38(1), pages 144-150.
    4. Liu, Yongan & Wang, Xinhua & Liu, Haizhen & Dong, Zhaohui & Cao, Guozhou & Yan, Mi, 2014. "Hydrogen generation from Mg–LiBH4 hydrolysis improved by AlCl3 addition," Energy, Elsevier, vol. 68(C), pages 548-554.
    5. Barbir, Frano, 2009. "Transition to renewable energy systems with hydrogen as an energy carrier," Energy, Elsevier, vol. 34(3), pages 308-312.
    6. Tamboli, Ashif H. & Chaugule, Avinash A. & Sheikh, Faheem A. & Chung, Wook-Jin & Kim, Hern, 2015. "Synthesis and application of CeO2–NiO loaded TiO2 nanofiber as novel catalyst for hydrogen production from sodium borohydride hydrolysis," Energy, Elsevier, vol. 89(C), pages 568-575.
    7. Chinnappan, Amutha & Kang, Hyuck-Chul & Kim, Hern, 2011. "Preparation of PVDF nanofiber composites for hydrogen generation from sodium borohydride," Energy, Elsevier, vol. 36(2), pages 755-759.
    8. Chinnappan, Amutha & Jadhav, Arvind H. & Puguan, John Marc C. & Appiah-Ntiamoah, Richard & Kim, Hern, 2015. "Fabrication of ionic liquid/polymer nanoscale networks by electrospinning and chemical cross-linking and their application in hydrogen generation from the hydrolysis of NaBH4," Energy, Elsevier, vol. 79(C), pages 482-488.
    9. Gomes, João F.P. & Puna, Jaime F.B. & Gonçalves, Lissa M. & Bordado, João C.M., 2011. "Study on the use of MgAl hydrotalcites as solid heterogeneous catalysts for biodiesel production," Energy, Elsevier, vol. 36(12), pages 6770-6778.
    10. Santos, D.M.F. & Sequeira, C.A.C., 2011. "Sodium borohydride as a fuel for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3980-4001.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Helder X. Nunes & Diogo L. Silva & Carmen M. Rangel & Alexandra M. F. R. Pinto, 2021. "Rehydrogenation of Sodium Borates to Close the NaBH 4 -H 2 Cycle: A Review," Energies, MDPI, vol. 14(12), pages 1-28, June.
    2. Bozkurt, Gamze & Özer, Abdulkadir & Yurtcan, Ayşe Bayrakçeken, 2019. "Development of effective catalysts for hydrogen generation from sodium borohydride: Ru, Pt, Pd nanoparticles supported on Co3O4," Energy, Elsevier, vol. 180(C), pages 702-713.
    3. Tomboc, Gracita Raquel M. & Tamboli, Ashif H. & Kim, Hern, 2017. "Synthesis of Co3O4 macrocubes catalyst using novel chitosan/urea template for hydrogen generation from sodium borohydride," Energy, Elsevier, vol. 121(C), pages 238-245.
    4. Cai, Haokun & Liu, Liping & Chen, Qiang & Lu, Ping & Dong, Jian, 2016. "Ni-polymer nanogel hybrid particles: A new strategy for hydrogen production from the hydrolysis of dimethylamine-borane and sodium borohydride," Energy, Elsevier, vol. 99(C), pages 129-135.
    5. Shen, Qiuwan & Shao, Zicheng & Li, Shian & Yang, Guogang & Sunden, Bengt, 2023. "Effects of B-site Al doping on microstructure characteristics and hydrogen production performance of novel LaNixAl1-xO3-δ perovskite in methanol steam reforming," Energy, Elsevier, vol. 268(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamboli, Ashif H. & Chaugule, Avinash A. & Sheikh, Faheem A. & Chung, Wook-Jin & Kim, Hern, 2015. "Synthesis and application of CeO2–NiO loaded TiO2 nanofiber as novel catalyst for hydrogen production from sodium borohydride hydrolysis," Energy, Elsevier, vol. 89(C), pages 568-575.
    2. Shih, Yu-Jen & Su, Chia-Chi & Huang, Yao-Hui & Lu, Ming-Chun, 2013. "SiO2-supported ferromagnetic catalysts for hydrogen generation from alkaline NaBH4 (sodium borohydride) solution," Energy, Elsevier, vol. 54(C), pages 263-270.
    3. Helder X. Nunes & Diogo L. Silva & Carmen M. Rangel & Alexandra M. F. R. Pinto, 2021. "Rehydrogenation of Sodium Borates to Close the NaBH 4 -H 2 Cycle: A Review," Energies, MDPI, vol. 14(12), pages 1-28, June.
    4. Cai, Haokun & Liu, Liping & Chen, Qiang & Lu, Ping & Dong, Jian, 2016. "Ni-polymer nanogel hybrid particles: A new strategy for hydrogen production from the hydrolysis of dimethylamine-borane and sodium borohydride," Energy, Elsevier, vol. 99(C), pages 129-135.
    5. Banerjee, Madhuchanda & Dey, Binita & Talukdar, Jayanta & Chandra Kalita, Mohan, 2014. "Production of biodiesel from sunflower oil using highly catalytic bimetallic gold–silver core–shell nanoparticle," Energy, Elsevier, vol. 69(C), pages 695-699.
    6. Huang, Yao-Hui & Su, Chia-Chi & Wang, Shu-Ling & Lu, Ming-Chun, 2012. "Development of Al2O3 carrier-Ru composite catalyst for hydrogen generation from alkaline NaBH4 hydrolysis," Energy, Elsevier, vol. 46(1), pages 242-247.
    7. Loghmani, Mohammad Hassan & Shojaei, Abdollah Fallah, 2014. "Hydrogen production through hydrolysis of sodium borohydride: Oleic acid stabilized Co–La–Zr–B nanoparticle as a novel catalyst," Energy, Elsevier, vol. 68(C), pages 152-159.
    8. Ensafi, Ali A. & Nabiyan, Afshin & Jafari-Asl, Mehdi & Dinari, Mohammad & Farrokhpour, Hossein & Rezaei, B., 2016. "Galvanic exchange at layered doubled hydroxide/N-doped graphene as an in-situ method to fabricate powerful electrocatalysts for hydrogen evolution reaction," Energy, Elsevier, vol. 116(P1), pages 1087-1096.
    9. Yan, Kai & Chen, Aicheng, 2013. "Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu–Cr catalyst," Energy, Elsevier, vol. 58(C), pages 357-363.
    10. Tomboc, Gracita Raquel M. & Tamboli, Ashif H. & Kim, Hern, 2017. "Synthesis of Co3O4 macrocubes catalyst using novel chitosan/urea template for hydrogen generation from sodium borohydride," Energy, Elsevier, vol. 121(C), pages 238-245.
    11. Li, Fang & Arthur, Ernest Evans & La, Dahye & Li, Qiming & Kim, Hern, 2014. "Immobilization of CoCl2 (cobalt chloride) on PAN (polyacrylonitrile) composite nanofiber mesh filled with carbon nanotubes for hydrogen production from hydrolysis of NaBH4 (sodium borohydride)," Energy, Elsevier, vol. 71(C), pages 32-39.
    12. Borah, Manash Jyoti & Devi, Anuchaya & Saikia, Raktim Abha & Deka, Dhanapati, 2018. "Biodiesel production from waste cooking oil catalyzed by in-situ decorated TiO2 on reduced graphene oxide nanocomposite," Energy, Elsevier, vol. 158(C), pages 881-889.
    13. Shen, Xiaochen & Wang, Qing & Wu, Qingquan & Guo, Siqi & Zhang, Zhengyan & Sun, Ziyang & Liu, Baishu & Wang, Zhibin & Zhao, Bin & Ding, Weiping, 2015. "CoB supported on Ag-activated TiO2 as a highly active catalyst for hydrolysis of alkaline NaBH4 solution," Energy, Elsevier, vol. 90(P1), pages 464-474.
    14. Ji, Zhaoqi & Perez-Page, Maria & Chen, Jianuo & Rodriguez, Romeo Gonzalez & Cai, Rongsheng & Haigh, Sarah J. & Holmes, Stuart M., 2021. "A structured catalyst support combining electrochemically exfoliated graphene oxide and carbon black for enhanced performance and durability in low-temperature hydrogen fuel cells," Energy, Elsevier, vol. 226(C).
    15. García, Lázaro & González, Daniel & García, Carlos & García, Laura & Brayner, Carlos, 2013. "Efficiency of the sulfur–iodine thermochemical water splitting process for hydrogen production based on ADS (accelerator driven system)," Energy, Elsevier, vol. 57(C), pages 469-477.
    16. Lin, Kuang C. & Lin, Yuan-Chung & Hsiao, Yi-Hsing, 2014. "Microwave plasma studies of Spirulina algae pyrolysis with relevance to hydrogen production," Energy, Elsevier, vol. 64(C), pages 567-574.
    17. Yang, Zijun & Wang, Bowen & Jiao, Kui, 2020. "Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China," Energy, Elsevier, vol. 198(C).
    18. Singh, Neeraj Kumar & Kumari, Priyanka & Singh, Rajesh, 2021. "Intensified hydrogen yield using hydrogenase rich sulfate-reducing bacteria in bio-electrochemical system," Energy, Elsevier, vol. 219(C).
    19. Guo, Yuwei & Li, Yun & Li, Shuguang & Zhang, Lei & Li, Ying & Wang, Jun, 2015. "Enhancement of visible-light photocatalytic activity of Pt supported potassium niobate (Pt-KNbO3) by up-conversion luminescence agent (Er3+:Y3Al5O12) for hydrogen evolution from aqueous methanol solut," Energy, Elsevier, vol. 82(C), pages 72-79.
    20. Fard, Leyla Abolghasemi & Ojani, Reza & Raoof, Jahan Bakhsh & Zare, Ehsan Nazarzadeh & Lakouraj, Moslem Mansour, 2017. "Poly (pyrrole-co-aniline) hollow nanosphere supported Pd nanoflowers as high-performance catalyst for methanol electrooxidation in alkaline media," Energy, Elsevier, vol. 127(C), pages 419-427.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:93:y:2015:i:p1:p:955-962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.