Fabrication of ionic liquid/polymer nanoscale networks by electrospinning and chemical cross-linking and their application in hydrogen generation from the hydrolysis of NaBH4
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2014.11.041
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shih, Yu-Jen & Su, Chia-Chi & Huang, Yao-Hui & Lu, Ming-Chun, 2013. "SiO2-supported ferromagnetic catalysts for hydrogen generation from alkaline NaBH4 (sodium borohydride) solution," Energy, Elsevier, vol. 54(C), pages 263-270.
- Sahiner, Nurettin & Seven, Fahriye, 2014. "The use of superporous p(AAc (acrylic acid)) cryogels as support for Co and Ni nanoparticle preparation and as reactor in H2 production from sodium borohydride hydrolysis," Energy, Elsevier, vol. 71(C), pages 170-179.
- San Martin, J.I. & Zamora, I. & San Martin, J.J. & Aperribay, V. & Torres, E. & Eguia, P., 2010. "Influence of the rated power in the performance of different proton exchange membrane (PEM) fuel cells," Energy, Elsevier, vol. 35(5), pages 1898-1907.
- Huang, Zhen-Ming & Su, Ay & Liu, Ying-Chieh, 2013. "Hydrogen generator system using Ru catalyst for PEMFC (proton exchange membrane fuel cell) applications," Energy, Elsevier, vol. 51(C), pages 230-236.
- Li, Fang & Arthur, Ernest Evans & La, Dahye & Li, Qiming & Kim, Hern, 2014. "Immobilization of CoCl2 (cobalt chloride) on PAN (polyacrylonitrile) composite nanofiber mesh filled with carbon nanotubes for hydrogen production from hydrolysis of NaBH4 (sodium borohydride)," Energy, Elsevier, vol. 71(C), pages 32-39.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tamboli, Ashif H. & Chaugule, Avinash A. & Sheikh, Faheem A. & Chung, Wook-Jin & Kim, Hern, 2015. "Synthesis and application of CeO2–NiO loaded TiO2 nanofiber as novel catalyst for hydrogen production from sodium borohydride hydrolysis," Energy, Elsevier, vol. 89(C), pages 568-575.
- Tamboli, Ashif H. & Jadhav, Amol R. & Chung, Wook-Jin & Kim, Hern, 2015. "Structurally modified cerium doped hydrotalcite-like precursor as efficient catalysts for hydrogen production from sodium borohydride hydrolysis," Energy, Elsevier, vol. 93(P1), pages 955-962.
- Helder X. Nunes & Diogo L. Silva & Carmen M. Rangel & Alexandra M. F. R. Pinto, 2021. "Rehydrogenation of Sodium Borates to Close the NaBH 4 -H 2 Cycle: A Review," Energies, MDPI, vol. 14(12), pages 1-28, June.
- Shen, Xiaochen & Wang, Qing & Wu, Qingquan & Guo, Siqi & Zhang, Zhengyan & Sun, Ziyang & Liu, Baishu & Wang, Zhibin & Zhao, Bin & Ding, Weiping, 2015. "CoB supported on Ag-activated TiO2 as a highly active catalyst for hydrolysis of alkaline NaBH4 solution," Energy, Elsevier, vol. 90(P1), pages 464-474.
- Tomboc, Gracita Raquel M. & Tamboli, Ashif H. & Kim, Hern, 2017. "Synthesis of Co3O4 macrocubes catalyst using novel chitosan/urea template for hydrogen generation from sodium borohydride," Energy, Elsevier, vol. 121(C), pages 238-245.
- Cai, Haokun & Liu, Liping & Chen, Qiang & Lu, Ping & Dong, Jian, 2016. "Ni-polymer nanogel hybrid particles: A new strategy for hydrogen production from the hydrolysis of dimethylamine-borane and sodium borohydride," Energy, Elsevier, vol. 99(C), pages 129-135.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Loghmani, Mohammad Hassan & Shojaei, Abdollah Fallah, 2014. "Hydrogen production through hydrolysis of sodium borohydride: Oleic acid stabilized Co–La–Zr–B nanoparticle as a novel catalyst," Energy, Elsevier, vol. 68(C), pages 152-159.
- Li, Fang & Arthur, Ernest Evans & La, Dahye & Li, Qiming & Kim, Hern, 2014. "Immobilization of CoCl2 (cobalt chloride) on PAN (polyacrylonitrile) composite nanofiber mesh filled with carbon nanotubes for hydrogen production from hydrolysis of NaBH4 (sodium borohydride)," Energy, Elsevier, vol. 71(C), pages 32-39.
- Cai, Haokun & Liu, Liping & Chen, Qiang & Lu, Ping & Dong, Jian, 2016. "Ni-polymer nanogel hybrid particles: A new strategy for hydrogen production from the hydrolysis of dimethylamine-borane and sodium borohydride," Energy, Elsevier, vol. 99(C), pages 129-135.
- Kim, Taegyu, 2014. "NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell," Energy, Elsevier, vol. 69(C), pages 721-727.
- Sahiner, Nurettin & Seven, Fahriye, 2014. "The use of superporous p(AAc (acrylic acid)) cryogels as support for Co and Ni nanoparticle preparation and as reactor in H2 production from sodium borohydride hydrolysis," Energy, Elsevier, vol. 71(C), pages 170-179.
- Chai, Y.J. & Dong, Y.M. & Meng, H.X. & Jia, Y.Y. & Shen, J. & Huang, Y.M. & Wang, N., 2014. "Hydrogen generation by aluminum corrosion in cobalt (II) chloride and nickel (II) chloride aqueous solution," Energy, Elsevier, vol. 68(C), pages 204-209.
- Zhao, Jian & Ozden, Adnan & Shahgaldi, Samaneh & Alaefour, Ibrahim E. & Li, Xianguo & Hamdullahpur, Feridun, 2018. "Effect of Pt loading and catalyst type on the pore structure of porous electrodes in polymer electrolyte membrane (PEM) fuel cells," Energy, Elsevier, vol. 150(C), pages 69-76.
- Niknam, Taher & Kavousi Fard, Abdollah & Baziar, Aliasghar, 2012. "Multi-objective stochastic distribution feeder reconfiguration problem considering hydrogen and thermal energy production by fuel cell power plants," Energy, Elsevier, vol. 42(1), pages 563-573.
- Zhang, Xiuqin & Guo, Juncheng & Chen, Jincan, 2010. "The parametric optimum analysis of a proton exchange membrane (PEM) fuel cell and its load matching," Energy, Elsevier, vol. 35(12), pages 5294-5299.
- Tamilarasan, P. & Ramaprabhu, S., 2013. "Graphene based all-solid-state supercapacitors with ionic liquid incorporated polyacrylonitrile electrolyte," Energy, Elsevier, vol. 51(C), pages 374-381.
- Perng, Shiang-Wuu & Chien, Tsai-Chieh & Horng, Rong-Fang & Wu, Horng-Wen, 2019. "Performance enhancement of a plate methanol steam reformer by ribs installed in the reformer channel," Energy, Elsevier, vol. 167(C), pages 588-601.
- Li, Dazi & Yu, Yadi & Jin, Qibing & Gao, Zhiqiang, 2014. "Maximum power efficiency operation and generalized predictive control of PEM (proton exchange membrane) fuel cell," Energy, Elsevier, vol. 68(C), pages 210-217.
- Chou, Chang-Chen & Liu, Cheng-Hong & Chen, Bing-Hung, 2014. "Effects of reduction temperature and pH value of polyol process on reduced graphene oxide supported Pt electrocatalysts for oxygen reduction reaction," Energy, Elsevier, vol. 70(C), pages 231-238.
- Hsieh, Chuang-Yu & Pei, Pucheng & Bai, Qiang & Su, Ay & Weng, Fang-Bor & Lee, Chi-Yuan, 2021. "Results of a 200 hours lifetime test of a 7 kW Hybrid–Power fuel cell system on electric forklifts," Energy, Elsevier, vol. 214(C).
- Xuanxia Guo & Noradin Ghadimi, 2023. "Optimal Design of the Proton-Exchange Membrane Fuel Cell Connected to the Network Utilizing an Improved Version of the Metaheuristic Algorithm," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
- Li, Qiming & Chen, Yingbo & Lee, Dong Joo & Li, Fang & Kim, Hern, 2012. "Preparation of Y-zeolite/CoCl2 doped PVDF composite nanofiber and its application in hydrogen production," Energy, Elsevier, vol. 38(1), pages 144-150.
- Kilinc, Dilek & Sahin, Omer, 2020. "High volume hydrogen evolution from KBH4 hydrolysis with palladium complex catalyst," Renewable Energy, Elsevier, vol. 161(C), pages 257-264.
- Ghosh, P.C. & Vasudeva, U., 2011. "Analysis of 3000T class submarines equipped with polymer electrolyte fuel cells," Energy, Elsevier, vol. 36(5), pages 3138-3147.
- Kou, Huaqin & Luo, Wenhua & Huang, Zhiyong & Sang, Ge & Meng, Daqiao & Zhang, Guanghui & Chen, Changan & Luo, Deli & Hu, Changwen, 2015. "Fabrication and experimental validation of a full-scale depleted uranium bed with thin double-layered annulus configuration for hydrogen isotopes recovery and delivery," Energy, Elsevier, vol. 90(P1), pages 588-594.
- Lee, Chi-Hung & Chen, Szu-Hsien & Wang, Yen-Zen & Lin, Chao-Chien & Huang, Chih-Kai & Chuang, Ching-Nan & Wang, Chih-Kuang & Hsieh, Kuo-Huang, 2013. "Preparation and characterization of proton exchange membranes based on semi-interpenetrating sulfonated poly(imide-siloxane)/epoxy polymer networks," Energy, Elsevier, vol. 55(C), pages 905-915.
More about this item
Keywords
Nanofiber composites; Hydrogen generation; NaBH4; Ionic liquid with metal complex; Cross-linked; Recyclability;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:79:y:2015:i:c:p:482-488. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.