IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v64y2014icp551-556.html
   My bibliography  Save this article

Effects of multiple irradiations on luminescent materials and energy savings – A case study for the synthesis of BaMO4: Ln3+ (M = W, Mo; Ln = Eu, Tb) phosphors

Author

Listed:
  • Lin, Jintai
  • Zeng, Zhi
  • Ma, Qianmin
  • Wang, Qianming
  • Zhang, Yanfen

Abstract

A novel supersonic microwave co-assistance method (abbreviated as SMC) was used to efficiently synthesize BaMO4: Ln3+ (M = W, Mo; Ln = Eu, Tb) red/green phosphors at low temperature (343 K) in 40 min. X-ray powder diffraction (abbreviated as XRD), scanning electronic microscope (abbreviated as SEM) and photoluminescent spectra techniques (abbreviated as PL) were used to characterize the phosphors. SEM images revealed that shuttle shaped structures were achieved. The fluorescence property of phosphors demonstrated that both BaWO4 and BaMoO4 are efficient matrixes to sensitize europium or terbium. The red/green emissions were greatly enhanced under the simultaneous supersonic and microwave irradiation. We considered that this facile and effective technique owns the advantages of saving energy and shortening reaction time in contrast to conventional methods which may be promising in fabricating luminescent materials.

Suggested Citation

  • Lin, Jintai & Zeng, Zhi & Ma, Qianmin & Wang, Qianming & Zhang, Yanfen, 2014. "Effects of multiple irradiations on luminescent materials and energy savings – A case study for the synthesis of BaMO4: Ln3+ (M = W, Mo; Ln = Eu, Tb) phosphors," Energy, Elsevier, vol. 64(C), pages 551-556.
  • Handle: RePEc:eee:energy:v:64:y:2014:i:c:p:551-556
    DOI: 10.1016/j.energy.2013.11.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213009882
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.11.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manh, Do-Van & Chen, Yi-Hung & Chang, Chia-Chi & Chang, Ching-Yuan & Hanh, Hoang-Duc & Chau, Nguyen-Hoai & Tuyen, Trinh-Van & Long, Pham-Quoc & Minh, Chau-Van, 2012. "Effects of blending composition of tung oil and ultrasonic irradiation intensity on the biodiesel production," Energy, Elsevier, vol. 48(1), pages 519-524.
    2. Cardona, Ana I & Candal, Roberto & Sánchez, Benigno & Ávila, Pedro & Rebollar, Moisés, 2004. "TiO2 on magnesium silicate monolith: effects of different preparation techniques on the photocatalytic oxidation of chlorinated hydrocarbons," Energy, Elsevier, vol. 29(5), pages 845-852.
    3. An, Baichao & Wang, Wenying & Ji, Guijuan & Gan, Shucai & Gao, Guimei & Xu, Jijing & Li, Guanghuan, 2010. "Preparation of nano-sized α-Al2O3 from oil shale ash," Energy, Elsevier, vol. 35(1), pages 45-49.
    4. Deng, Xin & Fang, Zhen & Liu, Yun-hu & Yu, Chang-Liu, 2011. "Production of biodiesel from Jatropha oil catalyzed by nanosized solid basic catalyst," Energy, Elsevier, vol. 36(2), pages 777-784.
    5. Esmaeilifar, A. & Rowshanzamir, S. & Eikani, M.H. & Ghazanfari, E., 2010. "Synthesis methods of low-Pt-loading electrocatalysts for proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 35(9), pages 3941-3957.
    6. Chen, Kang-Shin & Lin, Yuan-Chung & Hsu, Kuo-Hsiang & Wang, Hsin-Kai, 2012. "Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system," Energy, Elsevier, vol. 38(1), pages 151-156.
    7. Diker, Halide & Varlikli, Canan & Mizrak, Koray & Dana, Aykutlu, 2011. "Characterizations and photocatalytic activity comparisons of N-doped nc-TiO2 depending on synthetic conditions and structural differences of amine sources," Energy, Elsevier, vol. 36(2), pages 1243-1254.
    8. Wang, M.J. & Huang, Y.F. & Chiueh, P.T. & Kuan, W.H. & Lo, S.L., 2012. "Microwave-induced torrefaction of rice husk and sugarcane residues," Energy, Elsevier, vol. 37(1), pages 177-184.
    9. Lian, Hongzhou & Hou, Zhiyao & Shang, Mengmeng & Geng, Dongling & Zhang, Yang & Lin, Jun, 2013. "Rare earth ions doped phosphors for improving efficiencies of solar cells," Energy, Elsevier, vol. 57(C), pages 270-283.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yongxin & Yue, Xuejun & Cai, Kun & Deng, Haidong & Zhang, Ming, 2015. "Microwave-assist hydrothermal synthesis and luminescence of NaGd(WO4):Tb3+ phosphors: A case study for the energy saving in the synthesis of phosphors," Energy, Elsevier, vol. 93(P2), pages 1413-1417.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng-Lim, Boey & Ganesan, Shangeetha & Maniam, Gaanty Pragas & Khairuddean, Melati, 2012. "Sequential conversion of high free fatty acid oils into biodiesel using a new catalyst system," Energy, Elsevier, vol. 46(1), pages 132-139.
    2. Bhattacharya, Madhuchhanda & Basak, Tanmay, 2013. "A theoretical study on the use of microwaves in reducing energy consumption for an endothermic reaction: Role of metal coated bounding surface," Energy, Elsevier, vol. 55(C), pages 278-294.
    3. Chuck, Christopher J. & Lou-Hing, Daniel & Dean, Rebecca & Sargeant, Lisa A. & Scott, Rod J. & Jenkins, Rhodri W., 2014. "Simultaneous microwave extraction and synthesis of fatty acid methyl ester from the oleaginous yeast Rhodotorula glutinis," Energy, Elsevier, vol. 69(C), pages 446-454.
    4. Ming-Chien Hsiao & Jui-Yang Kuo & Pei-Hsuan Hsieh & Shuhn-Shyurng Hou, 2018. "Improving Biodiesel Conversions from Blends of High- and Low-Acid-Value Waste Cooking Oils Using Sodium Methoxide as a Catalyst Based on a High Speed Homogenizer," Energies, MDPI, vol. 11(9), pages 1-11, August.
    5. Gupta, Anilkumar R. & Rathod, Virendra K., 2018. "Calcium diglyceroxide catalyzed biodiesel production from waste cooking oil in the presence of microwave: Optimization and kinetic studies," Renewable Energy, Elsevier, vol. 121(C), pages 757-767.
    6. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    8. Song, Xingjuan & Zhang, Dongming, 2014. "Bimetallic Ag–Ni/C particles as cathode catalyst in AFCs (alkaline fuel cells)," Energy, Elsevier, vol. 70(C), pages 223-230.
    9. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    10. Ismail, M.S. & Ingham, D.B. & Ma, L. & Hughes, K.J. & Pourkashanian, M., 2017. "Effects of catalyst agglomerate shape in polymer electrolyte fuel cells investigated by a multi-scale modelling framework," Energy, Elsevier, vol. 122(C), pages 420-430.
    11. Li, Yangyang & Jin, Yiying & Li, Jinhui, 2016. "Influence of thermal hydrolysis on composition characteristics of fatty acids in kitchen waste," Energy, Elsevier, vol. 102(C), pages 139-147.
    12. Ramachandran, K. & Suganya, T. & Nagendra Gandhi, N. & Renganathan, S., 2013. "Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 410-418.
    13. Blanco-Marigorta, A.M. & Suárez-Medina, J. & Vera-Castellano, A., 2013. "Exergetic analysis of a biodiesel production process from Jatropha curcas," Applied Energy, Elsevier, vol. 101(C), pages 218-225.
    14. Banerjee, Madhuchanda & Dey, Binita & Talukdar, Jayanta & Chandra Kalita, Mohan, 2014. "Production of biodiesel from sunflower oil using highly catalytic bimetallic gold–silver core–shell nanoparticle," Energy, Elsevier, vol. 69(C), pages 695-699.
    15. Maurizio Passaponti & Leonardo Lari & Marco Bonechi & Francesca Bruni & Walter Giurlani & Gabriele Sciortino & Luca Rosi & Lorenzo Fabbri & Martina Vizza & Vlado K. Lazarov & Claudio Fontanesi & Massi, 2020. "Optimisation Study of Co Deposition on Chars from MAP of Waste Tyres as Green Electrodes in ORR for Alkaline Fuel Cells," Energies, MDPI, vol. 13(21), pages 1-13, October.
    16. Motasemi, F. & Afzal, Muhammad T., 2013. "A review on the microwave-assisted pyrolysis technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 317-330.
    17. Martinez-Guerra, Edith & Gude, Veera Gnaneswar & Mondala, Andro & Holmes, William & Hernandez, Rafael, 2014. "Microwave and ultrasound enhanced extractive-transesterification of algal lipids," Applied Energy, Elsevier, vol. 129(C), pages 354-363.
    18. Ezebor, Francis & Khairuddean, Melati & Abdullah, Ahmad Zuhairi & Boey, Peng Lim, 2014. "Oil palm trunk and sugarcane bagasse derived heterogeneous acid catalysts for production of fatty acid methyl esters," Energy, Elsevier, vol. 70(C), pages 493-503.
    19. Rahnavard, Aylin & Rowshanzamir, Soosan & Parnian, Mohammad Javad & Amirkhanlou, Gholam Reza, 2015. "The effect of sulfonated poly (ether ether ketone) as the electrode ionomer for self-humidifying nanocomposite proton exchange membrane fuel cells," Energy, Elsevier, vol. 82(C), pages 746-757.
    20. Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2012. "Biodiesel production from non-edible plant oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3621-3647.

    More about this item

    Keywords

    BaWO4; BaMoO4; Europium; Phosphor; Microwave; Supersonic;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:64:y:2014:i:c:p:551-556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.