Investigation of Chinese oil shale resources comprehensive utilization performance
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2012.03.066
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jiang, X.M. & Han, X.X. & Cui, Z.G., 2007. "New technology for the comprehensive utilization of Chinese oil shale resources," Energy, Elsevier, vol. 32(5), pages 772-777.
- An, Baichao & Wang, Wenying & Ji, Guijuan & Gan, Shucai & Gao, Guimei & Xu, Jijing & Li, Guanghuan, 2010. "Preparation of nano-sized α-Al2O3 from oil shale ash," Energy, Elsevier, vol. 35(1), pages 45-49.
- Jaber, J. O. & Probert, S. D., 1999. "Environmental-impact assessment for the proposed oil-shale integrated tri-generation plant," Applied Energy, Elsevier, vol. 62(3), pages 169-209, March.
- Al-Otoom, Awni Y. & Shawabkeh, Reyad A. & Al-Harahsheh, Adnan M. & Shawaqfeh, Ahmad T., 2005. "The chemistry of minerals obtained from the combustion of Jordanian oil shale," Energy, Elsevier, vol. 30(5), pages 611-619.
- Jaber, J.O. & Probert, S.D. & Williams, P.T., 1999. "Evaluation of oil yield from Jordanian oil shales," Energy, Elsevier, vol. 24(9), pages 761-781.
- Jaber, J. O. & Probert, S. D. & Williams, P. T., 1998. "Modelling oil-shale integrated tri-generator behaviour: predicted performance and financial assessment," Applied Energy, Elsevier, vol. 59(2-3), pages 73-95, February.
- Chen, Shangbin & Zhu, Yanming & Wang, Hongyan & Liu, Honglin & Wei, Wei & Fang, Junhua, 2011. "Shale gas reservoir characterisation: A typical case in the southern Sichuan Basin of China," Energy, Elsevier, vol. 36(11), pages 6609-6616.
- Han, X.X. & Jiang, X.M. & Cui, Z.G., 2009. "Studies of the effect of retorting factors on the yield of shale oil for a new comprehensive utilization technology of oil shale," Applied Energy, Elsevier, vol. 86(11), pages 2381-2385, November.
- Jaber, J. O. & Probert, S. D., 1997. "Exploitation of Jordanian oil-shales," Applied Energy, Elsevier, vol. 58(2-3), pages 161-175, October.
- Al-Harahsheh, Adnan & Al-Otoom, Awni Y. & Shawabkeh, Reyad A., 2005. "Sulfur distribution in the oil fractions obtained by thermal cracking of Jordanian El-Lajjun oil Shale," Energy, Elsevier, vol. 30(15), pages 2784-2795.
- Wallman, P.H., 1992. "Coproduction of oil and electric power from Colorado oil shale," Energy, Elsevier, vol. 17(4), pages 313-319.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Juan & Sun, Lulu & Zhang, Jiaqing & Ding, Yanming & Chen, Wenlu & Zhong, Yu, 2021. "Kinetic parameters estimation and reaction model modification for thermal degradation of Beizao oil shale based on thermogravimetric analysis coupled with deconvolution procedure," Energy, Elsevier, vol. 229(C).
- Hao Zeng & Wentong He & Lihong Yang & Jianzheng Su & Xianglong Meng & Xueqi Cen & Wei Guo, 2022. "Evolution of Biomarker Maturity Parameters and Feedback to the Pyrolysis Process for In Situ Conversion of Nongan Oil Shale in Songliao Basin," Energies, MDPI, vol. 15(10), pages 1-20, May.
- Niu, Daming & Sun, Pingchang & Ma, Lin & Zhao, Kang'an & Ding, Cong, 2023. "Porosity evolution of Minhe oil shale under an open rapid heating system and the carbon storage potentials," Renewable Energy, Elsevier, vol. 205(C), pages 783-799.
- Han, Xiangxin & Niu, Mengting & Jiang, Xiumin, 2014. "Combined fluidized bed retorting and circulating fluidized bed combustion system of oil shale: 2. Energy and economic analysis," Energy, Elsevier, vol. 74(C), pages 788-794.
- Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Advanced exergy analysis of an oil shale retorting process," Applied Energy, Elsevier, vol. 165(C), pages 405-415.
- Wei Guo & Zhendong Wang & Youhong Sun & Xiaoshu Lü & Yuan Wang & Sunhua Deng & Qiang Li, 2020. "Effects of Packer Locations on Downhole Electric Heater Performance: Experimental Test and Economic Analysis," Energies, MDPI, vol. 13(2), pages 1-17, January.
- Wang, Lei & Yang, Dong & Zhang, Yuxing & Li, Wenqing & Kang, Zhiqin & Zhao, Yangsheng, 2022. "Research on the reaction mechanism and modification distance of oil shale during high-temperature water vapor pyrolysis," Energy, Elsevier, vol. 261(PB).
- Kun, Zhang & He, Demin & Guan, Jun & Zhang, Qiumin, 2019. "Thermodynamic analysis of chemical looping gasification coupled with lignite pyrolysis," Energy, Elsevier, vol. 166(C), pages 807-818.
- Lu, Yang & Wang, Ying & Zhang, Jing & Wang, Qi & Zhao, Yuqiong & Zhang, Yongfa, 2020. "Investigation on the characteristics of pyrolysates during co-pyrolysis of Zhundong coal and Changji oil shale and its kinetics," Energy, Elsevier, vol. 200(C).
- Zhan, Honglei & Chen, Mengxi & Zhao, Kun & Li, Yizhang & Miao, Xinyang & Ye, Haimu & Ma, Yue & Hao, Shijie & Li, Hongfang & Yue, Wenzheng, 2018. "The mechanism of the terahertz spectroscopy for oil shale detection," Energy, Elsevier, vol. 161(C), pages 46-51.
- Huang, HanWei & Yu, Hao & Xu, WenLong & Lyu, ChengSi & Micheal, Marembo & Xu, HengYu & Liu, He & Wu, HengAn, 2023. "A coupled thermo-hydro-mechanical-chemical model for production performance of oil shale reservoirs during in-situ conversion process," Energy, Elsevier, vol. 268(C).
- Juan Jin & Weidong Jiang & Jiandong Liu & Junfeng Shi & Xiaowen Zhang & Wei Cheng & Ziniu Yu & Weixi Chen & Tingfu Ye, 2023. "Numerical Analysis of In Situ Conversion Process of Oil Shale Formation Based on Thermo-Hydro-Chemical Coupled Modelling," Energies, MDPI, vol. 16(5), pages 1-17, February.
- Lu, Yang & Wang, Ying & Zhang, Jing & Xu, Ying & Li, Guoqiang & Zhang, Yongfa, 2019. "Investigation on the catalytic effect of AAEMs in Zhundong coal on the combustion characteristics of Changji oil shale and its kinetics," Energy, Elsevier, vol. 178(C), pages 89-100.
- Sun, Youhong & Bai, Fengtian & Lü, Xiaoshu & Jia, Chunxia & Wang, Qing & Guo, Mingyi & Li, Qiang & Guo, Wei, 2015. "Kinetic study of Huadian oil shale combustion using a multi-stage parallel reaction model," Energy, Elsevier, vol. 82(C), pages 705-713.
- Zhou, Huairong & Li, Hongwei & Duan, Runhao & Yang, Qingchun, 2020. "An integrated scheme of coal-assisted oil shale efficient pyrolysis and high-value conversion of pyrolysis oil," Energy, Elsevier, vol. 196(C).
- Li, Xiuxi & Zhou, Huairong & Wang, Yajun & Qian, Yu & Yang, Siyu, 2015. "Thermoeconomic analysis of oil shale retorting processes with gas or solid heat carrier," Energy, Elsevier, vol. 87(C), pages 605-614.
- Guo, Wei & Yang, Qinchuan & Deng, Sunhua & Li, Qiang & Sun, Youhong & Su, Jianzheng & Zhu, Chaofan, 2022. "Experimental study of the autothermic pyrolysis in-situ conversion process (ATS) for oil shale recovery," Energy, Elsevier, vol. 258(C).
- Kang, Zhiqin & Zhao, Yangsheng & Yang, Dong, 2020. "Review of oil shale in-situ conversion technology," Applied Energy, Elsevier, vol. 269(C).
- Zhang, Shuo & Song, Shengyuan & Zhang, Wen & Zhao, Jinmin & Cao, Dongfang & Ma, Wenliang & Chen, Zijian & Hu, Ying, 2023. "Research on the inherent mechanism of rock mass deformation of oil shale in-situ mining under the condition of thermal-fluid-solid coupling," Energy, Elsevier, vol. 280(C).
- Yu Song & Kai Zhu & Yinbo Xu & Qingtao Meng & Zhaojun Liu & Pingchang Sun & Xiang Ye, 2021. "Paleovegetational Reconstruction and Implications on Formation of Oil Shale and Coal in the Lower Cretaceous Laoheishan Basin (NE China): Evidence from Palynology and Terpenoid Biomarkers," Energies, MDPI, vol. 14(15), pages 1-21, August.
- Long, Lin & Zhou, Weixing & Qiu, Yunfeng & Lan, Zhenzhong, 2020. "Coking and gas products behavior of supercritical n-decane over NiO nanoparticle/nanosheets modified HZSM-5," Energy, Elsevier, vol. 192(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Han, Xiangxin & Niu, Mengting & Jiang, Xiumin, 2014. "Combined fluidized bed retorting and circulating fluidized bed combustion system of oil shale: 2. Energy and economic analysis," Energy, Elsevier, vol. 74(C), pages 788-794.
- Han, X.X. & Jiang, X.M. & Cui, Z.G., 2009. "Studies of the effect of retorting factors on the yield of shale oil for a new comprehensive utilization technology of oil shale," Applied Energy, Elsevier, vol. 86(11), pages 2381-2385, November.
- Niu, Mengting & Wang, Sha & Han, Xiangxin & Jiang, Xiumin, 2013. "Yield and characteristics of shale oil from the retorting of oil shale and fine oil-shale ash mixtures," Applied Energy, Elsevier, vol. 111(C), pages 234-239.
- Mu, Mao & Han, Xiangxin & Jiang, Xiumin, 2018. "Combined fluidized bed retorting and circulating fluidized bed combustion system of oil shale: 3. Exergy analysis," Energy, Elsevier, vol. 151(C), pages 930-939.
- Kang, Zhiqin & Zhao, Yangsheng & Yang, Dong, 2020. "Review of oil shale in-situ conversion technology," Applied Energy, Elsevier, vol. 269(C).
- Jaber, J. O. & Al-Sarkhi, A. & Akash, B. A. & Mohsen, M. S., 2004. "Medium-range planning economics of future electrical-power generation options," Energy Policy, Elsevier, vol. 32(3), pages 357-366, February.
- Saif, Tarik & Lin, Qingyang & Butcher, Alan R. & Bijeljic, Branko & Blunt, Martin J., 2017. "Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro-tomography, automated ultra-high resolution SEM, MAPS Mineralogy and FIB-SEM," Applied Energy, Elsevier, vol. 202(C), pages 628-647.
- Al-Harahsheh, Adnan & Al-Otoom, Awni Y. & Shawabkeh, Reyad A., 2005. "Sulfur distribution in the oil fractions obtained by thermal cracking of Jordanian El-Lajjun oil Shale," Energy, Elsevier, vol. 30(15), pages 2784-2795.
- Siyuan Chen & Fanghui Liu & Yang Zhou & Xiuping Lan & Shouzhen Li & Lulu Wang & Quan Xu & Yeqing Li & Yan Jin, 2022. "Graphene and Resin Coated Proppant with Electrically Conductive Properties for In-Situ Modification of Shale Oil," Energies, MDPI, vol. 15(15), pages 1-9, August.
- Yang, Yu & Wang, Quanhai & Lu, Xiaofeng & Li, Jianbo & Liu, Zhuo, 2018. "Combustion behaviors and pollutant emission characteristics of low calorific oil shale and its semi-coke in a lab-scale fluidized bed combustor," Applied Energy, Elsevier, vol. 211(C), pages 631-638.
- Jiang, X.M. & Han, X.X. & Cui, Z.G., 2007. "New technology for the comprehensive utilization of Chinese oil shale resources," Energy, Elsevier, vol. 32(5), pages 772-777.
- He, Lu & Ma, Yue & Yue, Changtao & Li, Shuyuan & Tang, Xun, 2022. "The heating performance and kinetic behaviour of oil shale during microwave pyrolysis," Energy, Elsevier, vol. 244(PB).
- Lu, Yang & Wang, Ying & Zhang, Jing & Wang, Qi & Zhao, Yuqiong & Zhang, Yongfa, 2020. "Investigation on the characteristics of pyrolysates during co-pyrolysis of Zhundong coal and Changji oil shale and its kinetics," Energy, Elsevier, vol. 200(C).
- Versan KOK, Mustafa, 2011. "Thermo-oxidative characterization and kinetics of tar sands," Energy, Elsevier, vol. 36(8), pages 5338-5342.
- Cheng, Shuo & Zhang, Hongtao & Chang, Fengmin & Zhang, Feng & Wang, Kaijun & Qin, Ya & Huang, Tixiao, 2019. "Combustion behavior and thermochemical treatment scheme analysis of oil sludges and oil sludge semicokes," Energy, Elsevier, vol. 167(C), pages 575-587.
- He, Lu & Ma, Yue & Tan, Ting & Yue, Changtao & Li, Shuyuan & Tang, Xun, 2021. "Mechanisms of sulfur and nitrogen transformation during Longkou oil shale pyrolysis," Energy, Elsevier, vol. 232(C).
- Jaber, J. O. & Probert, S. D., 1999. "Environmental-impact assessment for the proposed oil-shale integrated tri-generation plant," Applied Energy, Elsevier, vol. 62(3), pages 169-209, March.
- Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
- Chen, Junqing & Jiang, Fujie & Cong, Qi & Pang, Xiongqi & Ma, Kuiyou & Shi, Kanyuan & Pang, Bo & Chen, Dongxia & Pang, Hong & Yang, Xiaobin & Wang, Yuying & Li, Bingyao, 2023. "Adsorption characteristics of shale gas in organic–inorganic slit pores," Energy, Elsevier, vol. 278(C).
- Jiang-Jiang, Wang & Chun-Fa, Zhang & You-Yin, Jing, 2010. "Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China," Applied Energy, Elsevier, vol. 87(4), pages 1247-1259, April.
More about this item
Keywords
Oil shale; Comprehensive utilization technology; Solid heat carrier technology; Predicted performance; Financial assessment;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:42:y:2012:i:1:p:224-232. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.