IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v57y2013icp270-283.html
   My bibliography  Save this article

Rare earth ions doped phosphors for improving efficiencies of solar cells

Author

Listed:
  • Lian, Hongzhou
  • Hou, Zhiyao
  • Shang, Mengmeng
  • Geng, Dongling
  • Zhang, Yang
  • Lin, Jun

Abstract

This paper discusses lanthanide doped luminescent materials which can modify the solar spectrum to reduce the spectral losses encountered by PV (photovoltaic) devices and enhance the conversion efficiency. High cost owing to low conversion efficiency is a limiting factor for contribution of PV devices. Thermalization, recombination, and transmission, resulted from spectral mismatch are three major losses. Many efforts have been made on spectral modification to circumvent these losses. Spectral modification is to modify the incident photons to appropriate energy by upconversion, downconversion or downshifting to better match with the bandgap of semiconductors. Recently, many lanthanide doped spectral modifiers in variety of hosts have been prepared and used to reduce the spectral losses. These materials will be discussed in this paper and the challenges of development and application of such materials is presented as well.

Suggested Citation

  • Lian, Hongzhou & Hou, Zhiyao & Shang, Mengmeng & Geng, Dongling & Zhang, Yang & Lin, Jun, 2013. "Rare earth ions doped phosphors for improving efficiencies of solar cells," Energy, Elsevier, vol. 57(C), pages 270-283.
  • Handle: RePEc:eee:energy:v:57:y:2013:i:c:p:270-283
    DOI: 10.1016/j.energy.2013.05.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213004039
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.05.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Badescu, Viorel & Badescu, Alina Mihaela, 2009. "Improved model for solar cells with up-conversion of low-energy photons," Renewable Energy, Elsevier, vol. 34(6), pages 1538-1544.
    2. Oliver Morton, 2006. "A new day dawning?: Silicon Valley sunrise," Nature, Nature, vol. 443(7107), pages 19-22, September.
    3. Bagnall, Darren M. & Boreland, Matt, 2008. "Photovoltaic technologies," Energy Policy, Elsevier, vol. 36(12), pages 4390-4396, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiatti, Chiara & Fabiani, Claudia & Bondi, Roberto & Zampini, Giulia & Latterini, Loredana & Pisello, Anna Laura, 2023. "Controlled combination of phosphorescent and fluorescent materials to exploit energy-saving potential in the built environment," Energy, Elsevier, vol. 275(C).
    2. Meng, Caifeng & Liu, Yunpeng & Xu, Zhiheng & Wang, Hongyu & Tang, Xiaobin, 2022. "Selective emitter with core–shell nanosphere structure for thermophotovoltaic systems," Energy, Elsevier, vol. 239(PA).
    3. Liu, Yongxin & Yue, Xuejun & Cai, Kun & Deng, Haidong & Zhang, Ming, 2015. "Microwave-assist hydrothermal synthesis and luminescence of NaGd(WO4):Tb3+ phosphors: A case study for the energy saving in the synthesis of phosphors," Energy, Elsevier, vol. 93(P2), pages 1413-1417.
    4. Lin, Jintai & Zeng, Zhi & Ma, Qianmin & Wang, Qianming & Zhang, Yanfen, 2014. "Effects of multiple irradiations on luminescent materials and energy savings – A case study for the synthesis of BaMO4: Ln3+ (M = W, Mo; Ln = Eu, Tb) phosphors," Energy, Elsevier, vol. 64(C), pages 551-556.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Douri, Y. & Baaziz, H. & Charifi, Z. & Khenata, R. & Hashim, U. & Al-Jassim, M., 2012. "Further optical properties of CdX (X=S, Te) compounds under quantum dot diameter effect: Ab initio method," Renewable Energy, Elsevier, vol. 45(C), pages 232-236.
    2. Peng, Wanxi & Chuong Nguyen, Thi Hong & Nguyen, Dang Le Tri & Wang, Ting & Van Thi Tran, Thi & Le, Trung Hieu & Le, Hai Khoa & Grace, Andrews Nirmala & Singh, Pardeep & Raizadaa, Pankaj & Nguyen Dinh,, 2021. "A roadmap towards the development of superior photocatalysts for solar- driven CO2-to-fuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Grau, Thilo & Huo, Molin & Neuhoff, Karsten, 2012. "Survey of photovoltaic industry and policy in Germany and China," Energy Policy, Elsevier, vol. 51(C), pages 20-37.
    4. Hoppmann, Joern, 2021. "Hand in hand to Nowhereland? How the resource dependence of research institutes influences their co-evolution with industry," Research Policy, Elsevier, vol. 50(2).
    5. Hoppmann, Joern & Wu, Geng & Johnson, Jillian, 2021. "The impact of demand-pull and technology-push policies on firms’ knowledge search," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    6. Hoppmann, Joern & Anadon, Laura Diaz & Narayanamurti, Venkatesh, 2020. "Why matter matters: How technology characteristics shape the strategic framing of technologies," Research Policy, Elsevier, vol. 49(1).
    7. Peters, Michael & Schmidt, Tobias S. & Wiederkehr, David & Schneider, Malte, 2011. "Shedding light on solar technologies'A techno-economic assessment and its policy implications," Energy Policy, Elsevier, vol. 39(10), pages 6422-6439, October.
    8. Bravi, Mirko & Parisi, Maria Laura & Tiezzi, Enzo & Basosi, Riccardo, 2011. "Life cycle assessment of a micromorph photovoltaic system," Energy, Elsevier, vol. 36(7), pages 4297-4306.
    9. Asim, Nilofar & Sopian, Kamaruzzaman & Ahmadi, Shideh & Saeedfar, Kasra & Alghoul, M.A. & Saadatian, Omidreza & Zaidi, Saleem H., 2012. "A review on the role of materials science in solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5834-5847.
    10. Paiano, Annarita, 2015. "Photovoltaic waste assessment in Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 99-112.
    11. Chunmeng Yang & Siqi Bu & Yi Fan & Wayne Xinwei Wan & Ruoheng Wang & Aoife Foley, 2022. "Review of Energy Transition Policies in Singapore, London, and California," Papers 2208.01433, arXiv.org.
    12. Sharma, Sunita & Bulkesh Siwach, & Ghoshal, S.K. & Mohan, Devendra, 2017. "Dye sensitized solar cells: From genesis to recent drifts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 529-537.
    13. Trapani, Kim & Millar, Dean L. & Smith, Helen C.M., 2013. "Novel offshore application of photovoltaics in comparison to conventional marine renewable energy technologies," Renewable Energy, Elsevier, vol. 50(C), pages 879-888.
    14. Kaldellis, J.K. & Ninou, I. & Zafirakis, D., 2011. "Minimum long-term cost solution for remote telecommunication stations on the basis of photovoltaic-based hybrid power systems," Energy Policy, Elsevier, vol. 39(5), pages 2512-2527, May.
    15. Hugo Gil Silva & Marcos Afonso, 2009. "Energia solar fotovoltaica: Contributo para um roadmapping do seu desenvolvimento tecnológico [Fotovoltaic solar energy: a contribute to a technological development roadmapping]," IET Working Papers Series 10/2009, Universidade Nova de Lisboa, IET/CICS.NOVA-Interdisciplinary Centre on Social Sciences, Faculty of Science and Technology.
    16. Osorio, A.F. & Ortega, Santiago & Arango-Aramburo, Santiago, 2016. "Assessment of the marine power potential in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 966-977.
    17. Hoppmann, Joern & Peters, Michael & Schneider, Malte & Hoffmann, Volker H., 2013. "The two faces of market support—How deployment policies affect technological exploration and exploitation in the solar photovoltaic industry," Research Policy, Elsevier, vol. 42(4), pages 989-1003.
    18. Timilsina, Govinda R. & Kurdgelashvili, Lado & Narbel, Patrick A., 2011. "A review of solar energy : markets, economics and policies," Policy Research Working Paper Series 5845, The World Bank.
    19. Peters, Michael & Schneider, Malte & Griesshaber, Tobias & Hoffmann, Volker H., 2012. "The impact of technology-push and demand-pull policies on technical change – Does the locus of policies matter?," Research Policy, Elsevier, vol. 41(8), pages 1296-1308.
    20. Wolfe, Philip, 2008. "The implications of an increasingly decentralised energy system," Energy Policy, Elsevier, vol. 36(12), pages 4509-4513, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:57:y:2013:i:c:p:270-283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.