IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v183y2019icp104-115.html
   My bibliography  Save this article

A multi-objective reliability optimization for reconfigurable systems considering components degradation

Author

Listed:
  • Zhao, Jiangbin
  • Si, Shubin
  • Cai, Zhiqiang

Abstract

Reconfigurable systems have been widely used in practical engineering, especially for the reconfigurable computing systems and reconfigurable manufacturing systems. The reliability of reconfigurable systems can be improved by components replacement or components rearrangement without changing their reliability. Combining the advantages of the rearrangement method and replacement method, an integrated method is proposed to improve the reconfigurable system reliability cost-effectively in this paper. Then, a 0–1 integer programming model of multi-objective optimization is established to obtain the reconfiguration with maximum system reliability and minimum reconfiguration cost based on the integrated method. The coarse-grained parallel genetic algorithm (CPGA) is introduced to solve the multi-objective model, while the multiple objectives problem can be converted into a single objective problem through the novel fitness function. Finally, three examples based on the production monitoring system are implemented to illustrate the effectiveness of the CPGA comparing with the replacement based genetic algorithm. The changes of optimal reconfigurations with different parameters of the fitness function and different pre-determined system reliability are also discussed based on the examples.

Suggested Citation

  • Zhao, Jiangbin & Si, Shubin & Cai, Zhiqiang, 2019. "A multi-objective reliability optimization for reconfigurable systems considering components degradation," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 104-115.
  • Handle: RePEc:eee:reensy:v:183:y:2019:i:c:p:104-115
    DOI: 10.1016/j.ress.2018.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018300115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2012. "Multi-objective optimization of design and testing of safety instrumented systems with MooN voting architectures using a genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 45-60.
    2. Cao, Dingzhou & Murat, Alper & Chinnam, Ratna Babu, 2013. "Efficient exact optimization of multi-objective redundancy allocation problems in series-parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 154-163.
    3. Moustafa Gadalla & Deyi Xue, 2017. "Recent advances in research on reconfigurable machine tools: a literature review," International Journal of Production Research, Taylor & Francis Journals, vol. 55(5), pages 1440-1454, March.
    4. Safari, Jalal, 2012. "Multi-objective reliability optimization of series-parallel systems with a choice of redundancy strategies," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 10-20.
    5. Zhang, Enze & Wu, Yifei & Chen, Qingwei, 2014. "A practical approach for solving multi-objective reliability redundancy allocation problems using extended bare-bones particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 65-76.
    6. Kavousi-Fard, Abdollah & Niknam, Taher, 2014. "Multi-objective stochastic Distribution Feeder Reconfiguration from the reliability point of view," Energy, Elsevier, vol. 64(C), pages 342-354.
    7. Vaidya, Omkarprasad S. & Kumar, Sushil, 2006. "Analytic hierarchy process: An overview of applications," European Journal of Operational Research, Elsevier, vol. 169(1), pages 1-29, February.
    8. Cadini, F. & Zio, E. & Petrescu, C.A., 2010. "Optimal expansion of an existing electrical power transmission network by multi-objective genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 173-181.
    9. Azadeh, A. & Maleki Shoja, B. & Ghanei, S. & Sheikhalishahi, M., 2015. "A multi-objective optimization problem for multi-state series-parallel systems: A two-stage flow-shop manufacturing system," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 62-74.
    10. Qingzhu Yao & Xiaoyan Zhu & Way Kuo, 2011. "Heuristics for component assignment problems based on the Birnbaum importance," IISE Transactions, Taylor & Francis Journals, vol. 43(9), pages 633-646.
    11. Levitin, Gregory, 2003. "Optimal allocation of multi-state elements in linear consecutively connected systems with vulnerable nodes," European Journal of Operational Research, Elsevier, vol. 150(2), pages 406-419, October.
    12. Li, Zhaojun & Liao, Haitao & Coit, David W., 2009. "A two-stage approach for multi-objective decision making with applications to system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1585-1592.
    13. Yamachi, Hidemi & Tsujimura, Yasuhiro & Kambayashi, Yasushi & Yamamoto, Hisashi, 2006. "Multi-objective genetic algorithm for solving N-version program design problem," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1083-1094.
    14. Khalili-Damghani, Kaveh & Abtahi, Amir-Reza & Tavana, Madjid, 2013. "A new multi-objective particle swarm optimization method for solving reliability redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 58-75.
    15. Cyrus Derman & Gerald J. Lieberman & Sheldon M. Ross, 1974. "Assembly of systems having maximum reliability," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 21(1), pages 1-12, March.
    16. Mingjian Zuo & Way Kuo, 1990. "Design and performance analysis of consecutive‐K‐out‐of‐n structure," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(2), pages 203-230, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiu, Siqi & Ming, Xinguo & Sallak, Mohamed & Lu, Jialiang, 2022. "A Birnbaum importance-based two-stage approach for two-type component assignment problems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    2. Zaretalab, Arash & Sharifi, Mani & Guilani, Pedram Pourkarim & Taghipour, Sharareh & Niaki, Seyed Taghi Akhavan, 2022. "A multi-objective model for optimizing the redundancy allocation, component supplier selection, and reliable activities for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    3. Zhang, Tian & Homri, Lazhar & Dantan, Jean-Yves & Siadat, Ali, 2023. "Models for reliability assessment of reconfigurable manufacturing system regarding configuration orders," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Fu, Yuqiang & Wang, Jun, 2022. "Optimum periodic maintenance policy of repairable multi-component system with component reallocation and system overhaul," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    5. Redutskiy Yury & Balycheva Marina & Dybdahl Hendrik, 2022. "Employee scheduling and maintenance planning for safety systems at the remotely located oil and gas industrial facilities," Engineering Management in Production and Services, Sciendo, vol. 14(4), pages 1-21, December.
    6. Wang, Dan & Si, Shubin & Cai, Zhiqiang & Zhao, Jiangbin, 2021. "Reliability optimization of linear consecutive-k-out-of-n: F systems driven by reconfigurable importance," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Jiangbin Zhao & Shubin Si & Zhiqiang Cai & Ming Su & Wei Wang, 2019. "Multiobjective optimization of reliability–redundancy allocation problems for serial parallel-series systems based on importance measure," Journal of Risk and Reliability, , vol. 233(5), pages 881-897, October.
    8. Sharifi, Mani & Taghipour, Sharareh, 2024. "Redundancy allocation problem with a mix of components for a multi-state system and continuous performance level components," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Ye, Zhenggeng & Cai, Zhiqiang & Zhou, Fuli & Zhao, Jiangbin & Zhang, Pan, 2019. "Reliability analysis for series manufacturing system with imperfect inspection considering the interaction between quality and degradation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 345-356.
    10. Fu, Yuqiang & Zhu, Xiaoyan & Ma, Xiaoyang, 2020. "Optimum component reallocation and system replacement maintenance for a used system with increasing minimal repair cost," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    11. Nath, Rahul & Muhuri, Pranab K., 2024. "A novel evolutionary solution approach for many-objective reliability-redundancy allocation problem based on objective prioritization and constraint optimization," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    12. Chenyang Ma & Wei Wang & Zhiqiang Cai & Jiangbin Zhao, 2022. "Maintenance optimization of reconfigurable systems based on multi-objective Birnbaum importance," Journal of Risk and Reliability, , vol. 236(2), pages 277-289, April.
    13. Dui, Hongyan & Zhang, Chi & Bai, Guanghan & Chen, Liwei, 2021. "Mission reliability modeling of UAV swarm and its structure optimization based on importance measure," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Fu, Yuqiang & Yuan, Tao & Zhu, Xiaoyan, 2019. "Importance-measure based methods for component reassignment problem of degrading components," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    15. Liu, Mingli & Wang, Dan & Si, Shubin, 2023. "Mixed reliability importance-based solving algorithm design for the cost-constrained reliability optimization model," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    16. Liu, Mingli & Wang, Dan & Si, Shubin, 2024. "Solving algorithm design for the cost minimization reliability optimization model driven by a novel cost-based importance measure," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    17. Zhao, Jiangbin & Si, Shubin & Cai, Zhiqiang & Guo, Peng & Zhu, Wenjin, 2020. "Mission success probability optimization for phased-mission systems with repairable component modules," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    18. Chen, Zhiwei & Hong, Dongpao & Cui, Weiwei & Xue, Weikang & Wang, Yao & Zhong, Jilong, 2023. "Resilience evaluation and optimal design for weapon system of systems with dynamic reconfiguration," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    19. Ma, Chenyang & Wang, Qiyu & Cai, Zhiqiang & Si, Shubin & Zhao, Jiangbin, 2021. "Component reassignment for reliability optimization of reconfigurable systems considering component degradation," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    20. Dui, Hongyan & Tian, Tianzi & Zhao, Jiangbin & Wu, Shaomin, 2022. "Comparing with the joint importance under consideration of consecutive-k-out-of-n system structure changes," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    21. Liu, Mingli & Wang, Dan & Zhao, Jiangbin & Si, Shubin, 2022. "Importance measure construction and solving algorithm oriented to the cost-constrained reliability optimization model," Reliability Engineering and System Safety, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Enze & Chen, Qingwei, 2016. "Multi-objective reliability redundancy allocation in an interval environment using particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 83-92.
    2. Zhang, Enze & Wu, Yifei & Chen, Qingwei, 2014. "A practical approach for solving multi-objective reliability redundancy allocation problems using extended bare-bones particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 65-76.
    3. Kong, Xiangyong & Gao, Liqun & Ouyang, Haibin & Li, Steven, 2015. "Solving the redundancy allocation problem with multiple strategy choices using a new simplified particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 147-158.
    4. Jiangbin Zhao & Shubin Si & Zhiqiang Cai & Ming Su & Wei Wang, 2019. "Multiobjective optimization of reliability–redundancy allocation problems for serial parallel-series systems based on importance measure," Journal of Risk and Reliability, , vol. 233(5), pages 881-897, October.
    5. Kayedpour, Farjam & Amiri, Maghsoud & Rafizadeh, Mahmoud & Shahryari Nia, Arash, 2017. "Multi-objective redundancy allocation problem for a system with repairable components considering instantaneous availability and strategy selection," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 11-20.
    6. Pradip Kundu, 2021. "A multi-objective reliability-redundancy allocation problem with active redundancy and interval type-2 fuzzy parameters," Operational Research, Springer, vol. 21(4), pages 2433-2458, December.
    7. Cao, Ran & Coit, David W. & Hou, Wei & Yang, Yushu, 2020. "Game theory based solution selection for multi-objective redundancy allocation in interval-valued problem parameters," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    8. Xiaoyan Zhu & Way Kuo, 2014. "Importance measures in reliability and mathematical programming," Annals of Operations Research, Springer, vol. 212(1), pages 241-267, January.
    9. Wang, Dan & Si, Shubin & Cai, Zhiqiang & Zhao, Jiangbin, 2021. "Reliability optimization of linear consecutive-k-out-of-n: F systems driven by reconfigurable importance," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Qingzhu Yao & Xiaoyan Zhu & Way Kuo, 2014. "A Birnbaum-importance based genetic local search algorithm for component assignment problems," Annals of Operations Research, Springer, vol. 212(1), pages 185-200, January.
    11. Gholinezhad, Hadi & Zeinal Hamadani, Ali, 2017. "A new model for the redundancy allocation problem with component mixing and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 66-73.
    12. Liu, Mingli & Wang, Dan & Zhao, Jiangbin & Si, Shubin, 2022. "Importance measure construction and solving algorithm oriented to the cost-constrained reliability optimization model," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Qiu, Siqi & Ming, Xinguo & Sallak, Mohamed & Lu, Jialiang, 2022. "A Birnbaum importance-based two-stage approach for two-type component assignment problems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    14. Attar, Ahmad & Raissi, Sadigh & Khalili-Damghani, Kaveh, 2017. "A simulation-based optimization approach for free distributed repairable multi-state availability-redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 177-191.
    15. Guilani, Pedram Pourkarim & Azimi, Parham & Niaki, S.T.A. & Niaki, Seyed Armin Akhavan, 2016. "Redundancy allocation problem of a system with increasing failure rates of components based on Weibull distribution: A simulation-based optimization approach," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 187-196.
    16. Behzad Karimi & Seyed Taghi Akhavan Niaki & Seyyed Masih Miriha & Mahsa Ghare Hasanluo & Shima Javanmard, 2019. "A weighted K-means clustering approach to solve the redundancy allocation problem of systems having components with different failures," Journal of Risk and Reliability, , vol. 233(6), pages 925-942, December.
    17. Liu, Mingli & Wang, Dan & Si, Shubin, 2023. "Mixed reliability importance-based solving algorithm design for the cost-constrained reliability optimization model," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    18. Coit, David W. & Zio, Enrico, 2019. "The evolution of system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    19. Soheil Azizi & Milad Mohammadi, 2023. "Strategy selection for multi-objective redundancy allocation problem in a k-out-of-n system considering the mean time to failure," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 1021-1044, June.
    20. Karimi, Behzad & Niaki, S.T.A. & Haleh, Hassan & Naderi, Bahman, 2018. "Bi-objective optimization of a job shop with two types of failures for the operating machines that use automated guided vehicles," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 92-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:183:y:2019:i:c:p:104-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.