IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v78y2014icp904-915.html
   My bibliography  Save this article

Impact of plug-in hybrid electric vehicles charging demand on the optimal energy management of renewable micro-grids

Author

Listed:
  • Kavousi-Fard, Abdollah
  • Abunasri, Alireza
  • Zare, Alireza
  • Hoseinzadeh, Rasool

Abstract

This paper suggests a new stochastic expert framework to investigate the charging effect of plug-in hybrid electric vehicles (PHEVs) on the optimal operation and management of micro-grids (MGs). In this way, a useful method based on smart charging approach is proposed to consider the charging demand of PHEVs in both residential location and public charging stations. The analysis is simulated for 24 h considering the uncertainties associated with the forecast error in the charging demand of PHEVs, hourly load consumption, hourly energy price and Renewable Energy Sources (RESs) output power. In order to see the effect of storage devices on the operation of the MG, NiMH-Battery is also incorporated in the MG. According to the high complexity of the problem, a new optimization method called θ-krill herd (θ-KH) algorithm is proposed which uses the phase angle vectors to update the velocity/position of krill animals with faster and more stable convergence. In addition, a new modification method is proposed to improve the search ability of the algorithm, effectively. The suggested problem is examined on an MG including different RESs such as photovoltaic (PV), fuel cells (FCs), wind turbine (WT), micro turbine (MT) and battery as the storage device.

Suggested Citation

  • Kavousi-Fard, Abdollah & Abunasri, Alireza & Zare, Alireza & Hoseinzadeh, Rasool, 2014. "Impact of plug-in hybrid electric vehicles charging demand on the optimal energy management of renewable micro-grids," Energy, Elsevier, vol. 78(C), pages 904-915.
  • Handle: RePEc:eee:energy:v:78:y:2014:i:c:p:904-915
    DOI: 10.1016/j.energy.2014.10.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214012389
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.10.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moghaddam, Amjad Anvari & Seifi, Alireza & Niknam, Taher & Alizadeh Pahlavani, Mohammad Reza, 2011. "Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source," Energy, Elsevier, vol. 36(11), pages 6490-6507.
    2. Mohammadi, Sirus & Mozafari, Babak & Solimani, Soodabeh & Niknam, Taher, 2013. "An Adaptive Modified Firefly Optimisation Algorithm based on Hong's Point Estimate Method to optimal operation management in a microgrid with consideration of uncertainties," Energy, Elsevier, vol. 51(C), pages 339-348.
    3. Pipattanasomporn, Manisa & Feroze, Hassan & Rahman, Saifur, 2012. "Securing critical loads in a PV-based microgrid with a multi-agent system," Renewable Energy, Elsevier, vol. 39(1), pages 166-174.
    4. Srivastava, Anurag K. & Annabathina, Bharath & Kamalasadan, Sukumar, 2010. "The Challenges and Policy Options for Integrating Plug-in Hybrid Electric Vehicle into the Electric Grid," The Electricity Journal, Elsevier, vol. 23(3), pages 83-91, April.
    5. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Roosta, Alireza & Amiri, Babak, 2012. "A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch," Energy, Elsevier, vol. 42(1), pages 530-545.
    6. Kavousi-Fard, Abdollah & Niknam, Taher, 2014. "Multi-objective stochastic Distribution Feeder Reconfiguration from the reliability point of view," Energy, Elsevier, vol. 64(C), pages 342-354.
    7. Madzharov, D. & Delarue, E. & D'haeseleer, W., 2014. "Integrating electric vehicles as flexible load in unit commitment modeling," Energy, Elsevier, vol. 65(C), pages 285-294.
    8. Fernández, I.J. & Calvillo, C.F. & Sánchez-Miralles, A. & Boal, J., 2013. "Capacity fade and aging models for electric batteries and optimal charging strategy for electric vehicles," Energy, Elsevier, vol. 60(C), pages 35-43.
    9. Morais, Hugo & Kádár, Péter & Faria, Pedro & Vale, Zita A. & Khodr, H.M., 2010. "Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming," Renewable Energy, Elsevier, vol. 35(1), pages 151-156.
    10. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
    11. Niknam, Taher & Golestaneh, Faranak & Malekpour, Ahmadreza, 2012. "Probabilistic energy and operation management of a microgrid containing wind/photovoltaic/fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational," Energy, Elsevier, vol. 43(1), pages 427-437.
    12. Khodr, H.M. & El Halabi, N. & García-Gracia, M., 2012. "Intelligent renewable microgrid scheduling controlled by a virtual power producer: A laboratory experience," Renewable Energy, Elsevier, vol. 48(C), pages 269-275.
    13. Cardoso, G. & Stadler, M. & Bozchalui, M.C. & Sharma, R. & Marnay, C. & Barbosa-Póvoa, A. & Ferrão, P., 2014. "Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicle driving schedules," Energy, Elsevier, vol. 64(C), pages 17-30.
    14. Hafez, Omar & Bhattacharya, Kankar, 2012. "Optimal planning and design of a renewable energy based supply system for microgrids," Renewable Energy, Elsevier, vol. 45(C), pages 7-15.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baziar, Aliasghar & Kavousi-Fard, Abdollah, 2013. "Considering uncertainty in the optimal energy management of renewable micro-grids including storage devices," Renewable Energy, Elsevier, vol. 59(C), pages 158-166.
    2. Najibi, Fatemeh & Niknam, Taher & Kavousi-Fard, Abdollah, 2016. "Optimal stochastic management of renewable MG (micro-grids) considering electro-thermal model of PV (photovoltaic)," Energy, Elsevier, vol. 97(C), pages 444-459.
    3. Arslan, Okan & Karasan, Oya Ekin, 2013. "Cost and emission impacts of virtual power plant formation in plug-in hybrid electric vehicle penetrated networks," Energy, Elsevier, vol. 60(C), pages 116-124.
    4. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    5. Sharma, Sharmistha & Bhattacharjee, Subhadeep & Bhattacharya, Aniruddha, 2018. "Probabilistic operation cost minimization of Micro-Grid," Energy, Elsevier, vol. 148(C), pages 1116-1139.
    6. Yang, Zhile & Li, Kang & Foley, Aoife, 2015. "Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 396-416.
    7. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    8. Craparo, Emily & Karatas, Mumtaz & Singham, Dashi I., 2017. "A robust optimization approach to hybrid microgrid operation using ensemble weather forecasts," Applied Energy, Elsevier, vol. 201(C), pages 135-147.
    9. Zhang, Jingrui & Wu, Yihong & Guo, Yiran & Wang, Bo & Wang, Hengyue & Liu, Houde, 2016. "A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints," Applied Energy, Elsevier, vol. 183(C), pages 791-804.
    10. Deihimi, Ali & Keshavarz Zahed, Babak & Iravani, Reza, 2016. "An interactive operation management of a micro-grid with multiple distributed generations using multi-objective uniform water cycle algorithm," Energy, Elsevier, vol. 106(C), pages 482-509.
    11. Yehia Gad & Hatem Diab & Mahmoud Abdelsalam & Yasser Galal, 2020. "Smart Energy Management System of Environmentally Friendly Microgrid Based on Grasshopper Optimization Technique," Energies, MDPI, vol. 13(19), pages 1-22, September.
    12. Elattar, Ehab E. & ElSayed, Salah K., 2020. "Probabilistic energy management with emission of renewable micro-grids including storage devices based on efficient salp swarm algorithm," Renewable Energy, Elsevier, vol. 153(C), pages 23-35.
    13. Salah K. ElSayed & Sattam Al Otaibi & Yasser Ahmed & Essam Hendawi & Nagy I. Elkalashy & Ayman Hoballah, 2021. "Probabilistic Modeling and Equilibrium Optimizer Solving for Energy Management of Renewable Micro-Grids Incorporating Storage Devices," Energies, MDPI, vol. 14(5), pages 1-24, March.
    14. Kamankesh, Hamidreza & Agelidis, Vassilios G. & Kavousi-Fard, Abdollah, 2016. "Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand," Energy, Elsevier, vol. 100(C), pages 285-297.
    15. Ben Christopher, S.J. & Carolin Mabel, M., 2020. "A bio-inspired approach for probabilistic energy management of micro-grid incorporating uncertainty in statistical cost estimation," Energy, Elsevier, vol. 203(C).
    16. Raslavičius, Laurencas & Azzopardi, Brian & Keršys, Artūras & Starevičius, Martynas & Bazaras, Žilvinas & Makaras, Rolandas, 2015. "Electric vehicles challenges and opportunities: Lithuanian review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 786-800.
    17. Mazzola, Simone & Astolfi, Marco & Macchi, Ennio, 2015. "A detailed model for the optimal management of a multigood microgrid," Applied Energy, Elsevier, vol. 154(C), pages 862-873.
    18. McLarty, Dustin & Panossian, Nadia & Jabbari, Faryar & Traverso, Alberto, 2019. "Dynamic economic dispatch using complementary quadratic programming," Energy, Elsevier, vol. 166(C), pages 755-764.
    19. Kavousi-Fard, Abdollah & Abbasi, Alireza & Rostami, Mohammad-Amin & Khosravi, Abbas, 2015. "Optimal distribution feeder reconfiguration for increasing the penetration of plug-in electric vehicles and minimizing network costs," Energy, Elsevier, vol. 93(P2), pages 1693-1703.
    20. Seshu Kumar, R. & Phani Raghav, L. & Koteswara Raju, D. & Singh, Arvind R., 2021. "Impact of multiple demand side management programs on the optimal operation of grid-connected microgrids," Applied Energy, Elsevier, vol. 301(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:78:y:2014:i:c:p:904-915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.