IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v84y2015icp357-364.html
   My bibliography  Save this article

Multistage distribution substations planning considering reliability and growth of energy demand

Author

Listed:
  • Esmaeeli, M.
  • Kazemi, A.
  • Shayanfar, H.A.
  • Haghifam, M.-R.

Abstract

The reliability of energy distribution is not usually considered in the planning of LV (low voltage) networks. However, the reliability cost has increased because of the appearance of the penalty schemes for the customer energy outage. In this paper, an approach is proposed for the planning of the LV distribution networks in which the distribution transformers are optimally organized. The size, number, and placement of the distribution transformers are optimally determined in order to improve the system reliability and to minimize the power and energy losses under the energy demand growth. An objective function is constituted, composed of the investment cost, maintenance cost, losses cost, and reliability cost. The proposed approach is applied to a test system consisting of 42 electric load points. It is observed that the appropriate placement of the distribution substation can reduce the interruption cost considerably, while the investment cost increased slightly. The total cost of the planning also decreased.

Suggested Citation

  • Esmaeeli, M. & Kazemi, A. & Shayanfar, H.A. & Haghifam, M.-R., 2015. "Multistage distribution substations planning considering reliability and growth of energy demand," Energy, Elsevier, vol. 84(C), pages 357-364.
  • Handle: RePEc:eee:energy:v:84:y:2015:i:c:p:357-364
    DOI: 10.1016/j.energy.2015.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215002844
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niknam, Taher & Kavousi Fard, Abdollah & Baziar, Aliasghar, 2012. "Multi-objective stochastic distribution feeder reconfiguration problem considering hydrogen and thermal energy production by fuel cell power plants," Energy, Elsevier, vol. 42(1), pages 563-573.
    2. Kavousi-Fard, Abdollah & Niknam, Taher, 2014. "Multi-objective stochastic Distribution Feeder Reconfiguration from the reliability point of view," Energy, Elsevier, vol. 64(C), pages 342-354.
    3. Tanrisever, Fehmi & Derinkuyu, Kursad & Heeren, Michael, 2013. "Forecasting electricity infeed for distribution system networks: An analysis of the Dutch case," Energy, Elsevier, vol. 58(C), pages 247-257.
    4. Aghaei, Jamshid & Muttaqi, Kashem M. & Azizivahed, Ali & Gitizadeh, Mohsen, 2014. "Distribution expansion planning considering reliability and security of energy using modified PSO (Particle Swarm Optimization) algorithm," Energy, Elsevier, vol. 65(C), pages 398-411.
    5. Zidan, Aboelsood & El-Saadany, Ehab F., 2013. "Distribution system reconfiguration for energy loss reduction considering the variability of load and local renewable generation," Energy, Elsevier, vol. 59(C), pages 698-707.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sedghi, Mahdi & Ahmadian, Ali & Aliakbar-Golkar, Masoud, 2016. "Assessment of optimization algorithms capability in distribution network planning: Review, comparison and modification techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 415-434.
    2. Esmaeeli, Mostafa & Kazemi, Ahad & Shayanfar, Heidarali & Chicco, Gianfranco & Siano, Pierluigi, 2017. "Risk-based planning of the distribution network structure considering uncertainties in demand and cost of energy," Energy, Elsevier, vol. 119(C), pages 578-587.
    3. Ehsan Gord & Rahman Dashti & Mojtaba Najafi & Hamid Reza Shaker, 2019. "Real Fault Section Estimation in Electrical Distribution Networks Based on the Fault Frequency Component Analysis," Energies, MDPI, vol. 12(6), pages 1-29, March.
    4. Arasteh, Hamidreza & Sepasian, Mohammad Sadegh & Vahidinasab, Vahid, 2016. "An aggregated model for coordinated planning and reconfiguration of electric distribution networks," Energy, Elsevier, vol. 94(C), pages 786-798.
    5. Kavousi-Fard, Abdollah & Abbasi, Alireza & Rostami, Mohammad-Amin & Khosravi, Abbas, 2015. "Optimal distribution feeder reconfiguration for increasing the penetration of plug-in electric vehicles and minimizing network costs," Energy, Elsevier, vol. 93(P2), pages 1693-1703.
    6. Luis Hernández-Callejo, 2019. "A Comprehensive Review of Operation and Control, Maintenance and Lifespan Management, Grid Planning and Design, and Metering in Smart Grids," Energies, MDPI, vol. 12(9), pages 1-50, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sedighizadeh, Mostafa & Esmaili, Masoud & Esmaeili, Mobin, 2014. "Application of the hybrid Big Bang-Big Crunch algorithm to optimal reconfiguration and distributed generation power allocation in distribution systems," Energy, Elsevier, vol. 76(C), pages 920-930.
    2. Kavousi-Fard, Abdollah & Abbasi, Alireza & Rostami, Mohammad-Amin & Khosravi, Abbas, 2015. "Optimal distribution feeder reconfiguration for increasing the penetration of plug-in electric vehicles and minimizing network costs," Energy, Elsevier, vol. 93(P2), pages 1693-1703.
    3. Mahmoud M. Sayed & Mohamed Y. Mahdy & Shady H. E. Abdel Aleem & Hosam K. M. Youssef & Tarek A. Boghdady, 2022. "Simultaneous Distribution Network Reconfiguration and Optimal Allocation of Renewable-Based Distributed Generators and Shunt Capacitors under Uncertain Conditions," Energies, MDPI, vol. 15(6), pages 1-27, March.
    4. Tolabi, Hajar Bagheri & Ali, Mohd Hasan & Shahrin Bin Md Ayob, & Rizwan, M., 2014. "Novel hybrid fuzzy-Bees algorithm for optimal feeder multi-objective reconfiguration by considering multiple-distributed generation," Energy, Elsevier, vol. 71(C), pages 507-515.
    5. kianmehr, Ehsan & Nikkhah, Saman & Rabiee, Abbas, 2019. "Multi-objective stochastic model for joint optimal allocation of DG units and network reconfiguration from DG owner’s and DisCo’s perspectives," Renewable Energy, Elsevier, vol. 132(C), pages 471-485.
    6. Mukhopadhyay, Bineeta & Das, Debapriya, 2020. "Multi-objective dynamic and static reconfiguration with optimized allocation of PV-DG and battery energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    7. Khorshidi, Reza & Shabaninia, Faridon & Niknam, Taher, 2016. "A new smart approach for state estimation of distribution grids considering renewable energy sources," Energy, Elsevier, vol. 94(C), pages 29-37.
    8. Praveen Agrawal & Neeraj Kanwar & Nikhil Gupta & Khaleequr Rehman Niazi & Anil Swarnkar & Nand K. Meena & Jin Yang, 2020. "Reliability and Network Performance Enhancement by Reconfiguring Underground Distribution Systems," Energies, MDPI, vol. 13(18), pages 1-16, September.
    9. Azizivahed, Ali & Narimani, Hossein & Naderi, Ehsan & Fathi, Mehdi & Narimani, Mohammad Rasoul, 2017. "A hybrid evolutionary algorithm for secure multi-objective distribution feeder reconfiguration," Energy, Elsevier, vol. 138(C), pages 355-373.
    10. Sun, Zeyi & Li, Lin & Bego, Andres & Dababneh, Fadwa, 2015. "Customer-side electricity load management for sustainable manufacturing systems utilizing combined heat and power generation system," International Journal of Production Economics, Elsevier, vol. 165(C), pages 112-119.
    11. Wang, Lixiao & Jing, Z.X. & Zheng, J.H. & Wu, Q.H. & Wei, Feng, 2018. "Decentralized optimization of coordinated electrical and thermal generations in hierarchical integrated energy systems considering competitive individuals," Energy, Elsevier, vol. 158(C), pages 607-622.
    12. Aghajani, Saemeh & Kalantar, Mohsen, 2017. "Optimal scheduling of distributed energy resources in smart grids: A complementarity approach," Energy, Elsevier, vol. 141(C), pages 2135-2144.
    13. Hossein Lotfi & Mohammad Ebrahim Hajiabadi & Hossein Parsadust, 2024. "Power Distribution Network Reconfiguration Techniques: A Thorough Review," Sustainability, MDPI, vol. 16(23), pages 1-33, November.
    14. Ben Christopher, S.J. & Carolin Mabel, M., 2020. "A bio-inspired approach for probabilistic energy management of micro-grid incorporating uncertainty in statistical cost estimation," Energy, Elsevier, vol. 203(C).
    15. Alessandro Sciullo & Gregory Winston Gilcrease & Mario Perugini & Dario Padovan & Barbara Curli & Jay Sterling Gregg & Osman Arrobbio & Erika Meynaerts & Sarah Delvaux & Lucia Polo-Alvarez & Chiara Ca, 2022. "Exploring Institutional and Socio-Economic Settings for the Development of Energy Communities in Europe," Energies, MDPI, vol. 15(4), pages 1-22, February.
    16. Abdulaziz Alanazi & Mohana Alanazi, 2022. "Artificial Electric Field Algorithm-Pattern Search for Many-Criteria Networks Reconfiguration Considering Power Quality and Energy Not Supplied," Energies, MDPI, vol. 15(14), pages 1-27, July.
    17. Ahmadigorji, Masoud & Amjady, Nima, 2016. "A multiyear DG-incorporated framework for expansion planning of distribution networks using binary chaotic shark smell optimization algorithm," Energy, Elsevier, vol. 102(C), pages 199-215.
    18. Esmaeeli, Mostafa & Kazemi, Ahad & Shayanfar, Heidarali & Chicco, Gianfranco & Siano, Pierluigi, 2017. "Risk-based planning of the distribution network structure considering uncertainties in demand and cost of energy," Energy, Elsevier, vol. 119(C), pages 578-587.
    19. Zidan, Aboelsood & El-Saadany, Ehab F., 2013. "Incorporating load variation and variable wind generation in service restoration plans for distribution systems," Energy, Elsevier, vol. 57(C), pages 682-691.
    20. Soheil Younesi & Bahman Ahmadi & Oguzhan Ceylan & Aydogan Ozdemir, 2022. "Optimum Parallel Processing Schemes to Improve the Computation Speed for Renewable Energy Allocation and Sizing Problems," Energies, MDPI, vol. 15(24), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:84:y:2015:i:c:p:357-364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.