IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v64y2014icp31-43.html
   My bibliography  Save this article

Analysis of a high performance model Stirling engine with compact porous-sheets heat exchangers

Author

Listed:
  • Li, Zhigang
  • Haramura, Yoshihiko
  • Kato, Yohei
  • Tang, Dawei

Abstract

A high performance model Stirling engine, in which the heater, regenerator and cooler as a whole is formed by hundreds of porous metal sheets, is identified for theoretical analysis to facilitate the future scale-up design. The reciprocating flow and heat transfer both in the heat exchanger and in the full engine is simulated by a dynamic mesh Computational Fluid Dynamics (CFD) method, and is validated by analytical solutions and experimental data. An optimization method is also developed to incorporate the entropy generation caused by flow friction and irreversible heat transfer. The results show that relatively high indicated power of 33.4 W is obtained, corresponding to a specific power of 1.88 W/cm3 and a thermal efficiency of 43.9%, which are attributable to the extremely small flow friction loss and excellent heat transfer characteristics in the regular shaped microchannels, as well as to the compact heat exchanger design that significantly reduces the dead volume. Given the same operating conditions, the optimized porous-sheets regenerator has a significantly lower total loss of available work while maintaining even higher thermal effectiveness in comparison with the optimized conventional wire mesh regenerator.

Suggested Citation

  • Li, Zhigang & Haramura, Yoshihiko & Kato, Yohei & Tang, Dawei, 2014. "Analysis of a high performance model Stirling engine with compact porous-sheets heat exchangers," Energy, Elsevier, vol. 64(C), pages 31-43.
  • Handle: RePEc:eee:energy:v:64:y:2014:i:c:p:31-43
    DOI: 10.1016/j.energy.2013.11.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213010037
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.11.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Campos, M.C. & Vargas, J.V.C. & Ordonez, J.C., 2012. "Thermodynamic optimization of a Stirling engine," Energy, Elsevier, vol. 44(1), pages 902-910.
    2. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2011. "Analytical model for predicting the effect of operating speed on shaft power output of Stirling engines," Energy, Elsevier, vol. 36(10), pages 5899-5908.
    3. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2013. "Theoretical model for predicting thermodynamic behavior of thermal-lag Stirling engine," Energy, Elsevier, vol. 49(C), pages 218-228.
    4. Rogdakis, E.D. & Antonakos, G.D. & Koronaki, I.P., 2012. "Thermodynamic analysis and experimental investigation of a Solo V161 Stirling cogeneration unit," Energy, Elsevier, vol. 45(1), pages 503-511.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Babaelahi, Mojtaba & Sayyaadi, Hoseyn, 2014. "Simple-II: A new numerical thermal model for predicting thermal performance of Stirling engines," Energy, Elsevier, vol. 69(C), pages 873-890.
    2. Miguel Torres García & Elisa Carvajal Trujillo & José Antonio Vélez Godiño & David Sánchez Martínez, 2018. "Thermodynamic Model for Performance Analysis of a Stirling Engine Prototype," Energies, MDPI, vol. 11(10), pages 1-25, October.
    3. Nielsen, Anders S. & York, Brayden T. & MacDonald, Brendan D., 2019. "Stirling engine regenerators: How to attain over 95% regenerator effectiveness with sub-regenerators and thermal mass ratios," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Kumaravelu, Thavamalar & Saadon, Syamimi & Abu Talib, Abd Rahim, 2022. "Heat transfer enhancement of a Stirling engine by using fins attachment in an energy recovery system," Energy, Elsevier, vol. 239(PA).
    5. Mohammadi, Mohammad Amin & Jafarian, Ali, 2018. "CFD simulation to investigate hydrodynamics of oscillating flow in a beta-type Stirling engine," Energy, Elsevier, vol. 153(C), pages 287-300.
    6. Zare, Sh. & Tavakolpour-Saleh, A.R., 2016. "Frequency-based design of a free piston Stirling engine using genetic algorithm," Energy, Elsevier, vol. 109(C), pages 466-480.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Chin-Hsiang & Yang, Hang-Suin & Keong, Lam, 2013. "Theoretical and experimental study of a 300-W beta-type Stirling engine," Energy, Elsevier, vol. 59(C), pages 590-599.
    2. Formosa, Fabien & Fréchette, Luc G., 2013. "Scaling laws for free piston Stirling engine design: Benefits and challenges of miniaturization," Energy, Elsevier, vol. 57(C), pages 796-808.
    3. Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
    4. Carlos Ulloa & José Luis Míguez & Jacobo Porteiro & Pablo Eguía & Antón Cacabelos, 2013. "Development of a Transient Model of a Stirling-Based CHP System," Energies, MDPI, vol. 6(7), pages 1-19, June.
    5. Ferreira, Ana Cristina & Silva, João & Teixeira, Senhorinha & Teixeira, José Carlos & Nebra, Silvia Azucena, 2020. "Assessment of the Stirling engine performance comparing two renewable energy sources: Solar energy and biomass," Renewable Energy, Elsevier, vol. 154(C), pages 581-597.
    6. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2014. "Optimization of rhombic drive mechanism used in beta-type Stirling engine based on dimensionless analysis," Energy, Elsevier, vol. 64(C), pages 970-978.
    7. Hooshang, M. & Askari Moghadam, R. & AlizadehNia, S., 2016. "Dynamic response simulation and experiment for gamma-type Stirling engine," Renewable Energy, Elsevier, vol. 86(C), pages 192-205.
    8. Hadžiselimović, Miralem & Srpčič, Gregor & Brinovar, Iztok & Praunseis, Zdravko & Seme, Sebastijan & Štumberger, Bojan, 2019. "A novel concept of linear oscillatory synchronous generator designed for a stirling engine," Energy, Elsevier, vol. 180(C), pages 19-27.
    9. Babaelahi, Mojtaba & Sayyaadi, Hoseyn, 2014. "Simple-II: A new numerical thermal model for predicting thermal performance of Stirling engines," Energy, Elsevier, vol. 69(C), pages 873-890.
    10. Luo, Zhongyang & Sultan, Umair & Ni, Mingjiang & Peng, Hao & Shi, Bingwei & Xiao, Gang, 2016. "Multi-objective optimization for GPU3 Stirling engine by combining multi-objective algorithms," Renewable Energy, Elsevier, vol. 94(C), pages 114-125.
    11. Zhao, Dan & Ji, Chenzhen & Li, Shihuai & Li, Junwei, 2014. "Thermodynamic measurement and analysis of dual-temperature thermoacoustic oscillations for energy harvesting application," Energy, Elsevier, vol. 65(C), pages 517-526.
    12. Mojtaba Alborzi & Faramarz Sarhaddi & Fatemeh Sobhnamayan, 2019. "Optimization of the thermal lag Stirling engine performance," Energy & Environment, , vol. 30(1), pages 156-175, February.
    13. Karabulut, Halit & Okur, Melih & Halis, Serdar & Altin, Murat, 2019. "Thermodynamic, dynamic and flow friction analysis of a Stirling engine with Scotch yoke piston driving mechanism," Energy, Elsevier, vol. 168(C), pages 169-181.
    14. Pablo Jimenez Zabalaga & Evelyn Cardozo & Luis A. Choque Campero & Joseph Adhemar Araoz Ramos, 2020. "Performance Analysis of a Stirling Engine Hybrid Power System," Energies, MDPI, vol. 13(4), pages 1-38, February.
    15. Zhu, Shunmin & Yu, Guoyao & O, Jongmin & Xu, Tao & Wu, Zhanghua & Dai, Wei & Luo, Ercang, 2018. "Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 522-533.
    16. Cheng, Chin-Hsiang & Yang, Hang-Suin & Jhou, Bing-Yi & Chen, Yi-Cheng & Wang, Yu-Jen, 2013. "Dynamic simulation of thermal-lag Stirling engines," Applied Energy, Elsevier, vol. 108(C), pages 466-476.
    17. Yang, Hang-Suin & Zhu, Hao-Qiang & Xiao, Xian-Zhong, 2023. "Comparison of the dynamic characteristics and performance of beta-type Stirling engines operating with different driving mechanisms," Energy, Elsevier, vol. 275(C).
    18. Ye, Wenlian & Wang, Xiaojun & Liu, Yingwen, 2020. "Application of artificial neural network for predicting the dynamic performance of a free piston Stirling engine," Energy, Elsevier, vol. 194(C).
    19. Lai, Xiaotian & Yu, Minjie & Long, Rui & Liu, Zhichun & Liu, Wei, 2019. "Dynamic performance analysis and optimization of dish solar Stirling engine based on a modified theoretical model," Energy, Elsevier, vol. 183(C), pages 573-583.
    20. Costa, Sol-Carolina & Tutar, Mustafa & Barreno, Igor & Esnaola, Jon-Ander & Barrutia, Haritz & García, David & González, Miguel-Angel & Prieto, Jesús-Ignacio, 2014. "Experimental and numerical flow investigation of Stirling engine regenerator," Energy, Elsevier, vol. 72(C), pages 800-812.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:64:y:2014:i:c:p:31-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.