Thermodynamic Model for Performance Analysis of a Stirling Engine Prototype
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Carlos Ulloa & Jacobo Porteiro & Pablo Eguía & José M. Pousada-Carballo, 2013. "Application Model for a Stirling Engine Micro-Generation System in Caravans in Different European Locations," Energies, MDPI, vol. 6(2), pages 1-16, February.
- Kaushik, S.C & Kumar, S, 2000. "Finite time thermodynamic analysis of endoreversible Stirling heat engine with regenerative losses," Energy, Elsevier, vol. 25(10), pages 989-1003.
- Li, Zhigang & Haramura, Yoshihiko & Kato, Yohei & Tang, Dawei, 2014. "Analysis of a high performance model Stirling engine with compact porous-sheets heat exchangers," Energy, Elsevier, vol. 64(C), pages 31-43.
- Costa, Sol-Carolina & Tutar, Mustafa & Barreno, Igor & Esnaola, Jon-Ander & Barrutia, Haritz & García, David & González, Miguel-Angel & Prieto, Jesús-Ignacio, 2014. "Experimental and numerical flow investigation of Stirling engine regenerator," Energy, Elsevier, vol. 72(C), pages 800-812.
- Cheng, Chin-Hsiang & Yang, Hang-Suin & Keong, Lam, 2013. "Theoretical and experimental study of a 300-W beta-type Stirling engine," Energy, Elsevier, vol. 59(C), pages 590-599.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jacek Kropiwnicki & Mariusz Furmanek, 2020. "A Theoretical and Experimental Study of Moderate Temperature Alfa Type Stirling Engines," Energies, MDPI, vol. 13(7), pages 1-21, April.
- Dong-Jun Kim & Yeongchae Park & Tae Young Kim & Kyuho Sim, 2022. "Design Optimization of Tubular Heat Exchangers for a Free-Piston Stirling Engine Based on Improved Quasi-Steady Flow Thermodynamic Model Predictions," Energies, MDPI, vol. 15(9), pages 1-20, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nielsen, Anders S. & York, Brayden T. & MacDonald, Brendan D., 2019. "Stirling engine regenerators: How to attain over 95% regenerator effectiveness with sub-regenerators and thermal mass ratios," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
- Ni, Mingjiang & Shi, Bingwei & Xiao, Gang & Peng, Hao & Sultan, Umair & Wang, Shurong & Luo, Zhongyang & Cen, Kefa, 2016. "Improved Simple Analytical Model and experimental study of a 100W β-type Stirling engine," Applied Energy, Elsevier, vol. 169(C), pages 768-787.
- Lu, Xiaochen & Ma, Rong & Wang, Chao & Yao, Wei, 2016. "Performance analysis of a lunar based solar thermal power system with regolith thermal storage," Energy, Elsevier, vol. 107(C), pages 227-233.
- González-Pino, I. & Pérez-Iribarren, E. & Campos-Celador, A. & Las-Heras-Casas, J. & Sala, J.M., 2015. "Influence of the regulation framework on the feasibility of a Stirling engine-based residential micro-CHP installation," Energy, Elsevier, vol. 84(C), pages 575-588.
- Yang, Hang-Suin & Cheng, Chin-Hsiang & Huang, Shang-Ting, 2018. "A complete model for dynamic simulation of a 1-kW class beta-type Stirling engine with rhombic-drive mechanism," Energy, Elsevier, vol. 161(C), pages 892-906.
- Mohammadi, Mohammad Amin & Jafarian, Ali, 2018. "CFD simulation to investigate hydrodynamics of oscillating flow in a beta-type Stirling engine," Energy, Elsevier, vol. 153(C), pages 287-300.
- Marion, Michaël & Louahlia, Hasna & Gualous, Hamid, 2016. "Performances of a CHP Stirling system fuelled with glycerol," Renewable Energy, Elsevier, vol. 86(C), pages 182-191.
- Qiu, Hao & Wang, Kai & Yu, Peifeng & Ni, Mingjiang & Xiao, Gang, 2021. "A third-order numerical model and transient characterization of a β-type Stirling engine," Energy, Elsevier, vol. 222(C).
- Babaelahi, Mojtaba & Sayyaadi, Hoseyn, 2014. "Simple-II: A new numerical thermal model for predicting thermal performance of Stirling engines," Energy, Elsevier, vol. 69(C), pages 873-890.
- Luo, Zhongyang & Sultan, Umair & Ni, Mingjiang & Peng, Hao & Shi, Bingwei & Xiao, Gang, 2016. "Multi-objective optimization for GPU3 Stirling engine by combining multi-objective algorithms," Renewable Energy, Elsevier, vol. 94(C), pages 114-125.
- Yu, Minjie & Xu, Lei & Cui, Haichuan & Liu, Zhichun & Liu, Wei, 2024. "Characteristics and potential of a novel inclined-flow stirling regenerator constructed by sinusoidal corrugated channels," Energy, Elsevier, vol. 288(C).
- Sadrameli, S.M., 2016. "Mathematical models for the simulation of thermal regenerators: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 462-476.
- Mojtaba Alborzi & Faramarz Sarhaddi & Fatemeh Sobhnamayan, 2019. "Optimization of the thermal lag Stirling engine performance," Energy & Environment, , vol. 30(1), pages 156-175, February.
- Nader, Wissam Bou & Chamoun, Joy & Dumand, Clément, 2020. "Optimization of the thermodynamic configurations of a thermoacoustic engine auxiliary power unit for range extended hybrid electric vehicles," Energy, Elsevier, vol. 195(C).
- Karabulut, Halit & Okur, Melih & Halis, Serdar & Altin, Murat, 2019. "Thermodynamic, dynamic and flow friction analysis of a Stirling engine with Scotch yoke piston driving mechanism," Energy, Elsevier, vol. 168(C), pages 169-181.
- Ahmadi, Mohammad H. & Ahmadi, Mohammad Ali & Pourfayaz, Fathollah & Hosseinzade, Hadi & Acıkkalp, Emin & Tlili, Iskander & Feidt, Michel, 2016. "Designing a powered combined Otto and Stirling cycle power plant through multi-objective optimization approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 585-595.
- Pablo Jimenez Zabalaga & Evelyn Cardozo & Luis A. Choque Campero & Joseph Adhemar Araoz Ramos, 2020. "Performance Analysis of a Stirling Engine Hybrid Power System," Energies, MDPI, vol. 13(4), pages 1-38, February.
- Cheng, Chin-Hsiang & Yang, Hang-Suin, 2011. "Analytical model for predicting the effect of operating speed on shaft power output of Stirling engines," Energy, Elsevier, vol. 36(10), pages 5899-5908.
- Bou Nader, Wissam S. & Mansour, Charbel J. & Nemer, Maroun G., 2018. "Optimization of a Brayton external combustion gas-turbine system for extended range electric vehicles," Energy, Elsevier, vol. 150(C), pages 745-758.
More about this item
Keywords
stirling engine; adiabatic model; isothermal model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2655-:d:173837. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.