Performance investigation of a cascade heat pump water heating system with a quasi-steady state analysis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2013.10.019
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yokoyama, Ryohei & Wakui, Tetsuya & Kamakari, Junya & Takemura, Kazuhisa, 2010. "Performance analysis of a CO2 heat pump water heating system under a daily change in a standardized demand," Energy, Elsevier, vol. 35(2), pages 718-728.
- Wu, Jianghong & Yang, Zhaoguang & Wu, Qinghao & Zhu, Yujuan, 2012. "Transient behavior and dynamic performance of cascade heat pump water heater with thermal storage system," Applied Energy, Elsevier, vol. 91(1), pages 187-196.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shao, Suola & Zhang, Huan & You, Shijun & Zheng, Wandong & Jiang, Lingfei, 2019. "Thermal performance analysis of a new refrigerant-heated radiator coupled with air-source heat pump heating system," Applied Energy, Elsevier, vol. 247(C), pages 78-88.
- Baek, Changhyun & Heo, Jaehyeok & Jung, Jongho & Cho, Honghyun & Kim, Yongchan, 2014. "Performance characteristics of a two-stage CO2 heat pump water heater adopting a sub-cooler vapor injection cycle at various operating conditions," Energy, Elsevier, vol. 77(C), pages 570-578.
- Colmenar-Santos, Antonio & Alberdi-Jiménez, Lucía & Nasarre-Cortés, Lorenzo & Mora-Larramona, Joaquín, 2014. "Residual heat use generated by a 12 kW fuel cell in an electric vehicle heating system," Energy, Elsevier, vol. 68(C), pages 182-190.
- Gao, J.T. & Xu, Z.Y. & Wang, R.Z., 2021. "An air-source hybrid absorption-compression heat pump with large temperature lift," Applied Energy, Elsevier, vol. 291(C).
- Zhang, Long & Jiang, Yiqiang & Dong, Jiankai & Yao, Yang, 2018. "Advances in vapor compression air source heat pump system in cold regions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 353-365.
- Sakr, Mohamed & Liu, Shuli, 2014. "A comprehensive review on applications of ohmic heating (OH)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 262-269.
- Samuel Boahen & Jong Min Choi, 2019. "A Study on the Performance of a Cascade Heat Pump for Generating Hot Water," Energies, MDPI, vol. 12(22), pages 1-20, November.
- Le, Khoa Xuan & Huang, Ming Jun & Shah, Nikhilkumar N. & Wilson, Christopher & Artain, Paul Mac & Byrne, Raymond & Hewitt, Neil J., 2019. "Techno-economic assessment of cascade air-to-water heat pump retrofitted into residential buildings using experimentally validated simulations," Applied Energy, Elsevier, vol. 250(C), pages 633-652.
- Li, Fenglei & Chang, Zhao & Li, Xinchang & Tian, Qi, 2018. "Energy and exergy analyses of a solar-driven ejector-cascade heat pump cycle," Energy, Elsevier, vol. 165(PB), pages 419-431.
- Gaigalis, Vygandas & Skema, Romualdas & Marcinauskas, Kazys & Korsakiene, Irena, 2016. "A review on Heat Pumps implementation in Lithuania in compliance with the National Energy Strategy and EU policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 841-858.
- Zou, Deqiu & Ma, Xianfeng & Liu, Xiaoshi & Zheng, Pengjun & Cai, Baiming & Huang, Jianfeng & Guo, Jiangrong & Liu, Mo, 2017. "Experimental research of an air-source heat pump water heater using water-PCM for heat storage," Applied Energy, Elsevier, vol. 206(C), pages 784-792.
- Shucai Bai & Fangyi Li & Wu Xie, 2022. "Green but Unpopular? Analysis on Purchase Intention of Heat Pump Water Heaters in China," Energies, MDPI, vol. 15(7), pages 1-19, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shao, Suola & Zhang, Huan & You, Shijun & Zheng, Wandong & Jiang, Lingfei, 2019. "Thermal performance analysis of a new refrigerant-heated radiator coupled with air-source heat pump heating system," Applied Energy, Elsevier, vol. 247(C), pages 78-88.
- Xiufang Liu & Changhai Liu & Ze Zhang & Liang Chen & Yu Hou, 2017. "Experimental Study on the Performance of Water Source Trans-Critical CO 2 Heat Pump Water Heater," Energies, MDPI, vol. 10(6), pages 1-14, June.
- Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
- Wakui, Tetsuya & Akai, Kazuki & Yokoyama, Ryohei, 2022. "Shrinking and receding horizon approaches for long-term operational planning of energy storage and supply systems," Energy, Elsevier, vol. 239(PD).
- Rendall, Joseph & Elatar, Ahmed & Nawaz, Kashif & Sun, Jian, 2023. "Medium-temperature phase change material integration in domestic heat pump water heaters for improved thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
- Yang, Zhao & Wu, Xi, 2013. "Retrofits and options for the alternatives to HCFC-22," Energy, Elsevier, vol. 59(C), pages 1-21.
- Le, Khoa Xuan & Huang, Ming Jun & Shah, Nikhilkumar N. & Wilson, Christopher & Artain, Paul Mac & Byrne, Raymond & Hewitt, Neil J., 2019. "Techno-economic assessment of cascade air-to-water heat pump retrofitted into residential buildings using experimentally validated simulations," Applied Energy, Elsevier, vol. 250(C), pages 633-652.
- Xu, Xiao Xiao & Chen, Guang Ming & Tang, Li Ming & Zhu, Zhi Jiang, 2012. "Experimental investigation on performance of transcritical CO2 heat pump system with ejector under optimum high-side pressure," Energy, Elsevier, vol. 44(1), pages 870-877.
- Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
- Wakui, Tetsuya & Yokoyama, Ryohei, 2014. "Optimal structural design of residential cogeneration systems in consideration of their operating restrictions," Energy, Elsevier, vol. 64(C), pages 719-733.
- Yang, Seung-Hwan & Rhee, Joong Yong, 2013. "Utilization and performance evaluation of a surplus air heat pump system for greenhouse cooling and heating," Applied Energy, Elsevier, vol. 105(C), pages 244-251.
- Chen, J.F. & Dai, Y.J. & Wang, R.Z., 2016. "Experimental and theoretical study on a solar assisted CO2 heat pump for space heating," Renewable Energy, Elsevier, vol. 89(C), pages 295-304.
- Jin, Xin & Wu, Fengping & Xu, Tao & Huang, Gongsheng & Wu, Huijun & Zhou, Xiaoqing & Wang, Dengjia & Liu, Yanfeng & Lai, Alvin CK., 2021. "Experimental investigation of the novel melting point modified Phase–Change material for heat pump latent heat thermal energy storage application," Energy, Elsevier, vol. 216(C).
- Zhang, Long & Jiang, Yiqiang & Dong, Jiankai & Yao, Yang, 2018. "Advances in vapor compression air source heat pump system in cold regions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 353-365.
- Le, Khoa Xuan & Huang, Ming Jun & Wilson, Christopher & Shah, Nikhilkumar N. & Hewitt, Neil J., 2020. "Tariff-based load shifting for domestic cascade heat pump with enhanced system energy efficiency and reduced wind power curtailment," Applied Energy, Elsevier, vol. 257(C).
- Ahmad, Tanveer & Chen, Huanxin & Shair, Jan, 2018. "Water source heat pump energy demand prognosticate using disparate data-mining based approaches," Energy, Elsevier, vol. 152(C), pages 788-803.
- Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei & Aki, Hirohisa, 2016. "Operation management of residential energy-supplying networks based on optimization approaches," Applied Energy, Elsevier, vol. 183(C), pages 340-357.
- Zauner, Christoph & Windholz, Bernd & Lauermann, Michael & Drexler-Schmid, Gerwin & Leitgeb, Thomas, 2020. "Development of an Energy Efficient Extrusion Factory employing a latent heat storage and a high temperature heat pump," Applied Energy, Elsevier, vol. 259(C).
- Zhou, Chaohui & Ni, Long & Wang, Jun & Yao, Yang, 2020. "Investigation on the performance of ASHP heating system using frequency-conversion technique based on a temperature and hydraulic-balance control strategy," Renewable Energy, Elsevier, vol. 147(P1), pages 141-154.
- Wakui, Tetsuya & Sawada, Kento & Yokoyama, Ryohei & Aki, Hirohisa, 2019. "Predictive management for energy supply networks using photovoltaics, heat pumps, and battery by two-stage stochastic programming and rule-based control," Energy, Elsevier, vol. 179(C), pages 1302-1319.
More about this item
Keywords
Cascade refrigeration system; Heat pump water heater; Numerical simulation; Quasi-steady state; System performance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:63:y:2013:i:c:p:283-294. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.