Medium-temperature phase change material integration in domestic heat pump water heaters for improved thermal energy storage
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2023.113656
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Elfeky, K.E. & Li, Xinyi & Ahmed, N. & Lu, Lin & Wang, Qiuwang, 2019. "Optimization of thermal performance in thermocline tank thermal energy storage system with the multilayered PCM(s) for CSP tower plants," Applied Energy, Elsevier, vol. 243(C), pages 175-190.
- Zhongbao Liu & Fengfei Lou & Xin Qi & Yiyao Shen, 2020. "Enhancing Heating Performance of Low-Temperature Air Source Heat Pumps Using Compressor Casing Thermal Storage," Energies, MDPI, vol. 13(12), pages 1-18, June.
- Ahmed, N. & Elfeky, K.E. & Lu, Lin & Wang, Q.W., 2020. "Thermal performance analysis of thermocline combined sensible-latent heat storage system using cascaded-layered PCM designs for medium temperature applications," Renewable Energy, Elsevier, vol. 152(C), pages 684-697.
- Wu, Wei & Wang, Xiaoyu & Xia, Man & Dou, Yiping & Yin, Zhengyu & Wang, Jun & Lu, Ping, 2020. "A novel composite PCM for seasonal thermal energy storage of solar water heating system," Renewable Energy, Elsevier, vol. 161(C), pages 457-469.
- Wu, Jianghong & Yang, Zhaoguang & Wu, Qinghao & Zhu, Yujuan, 2012. "Transient behavior and dynamic performance of cascade heat pump water heater with thermal storage system," Applied Energy, Elsevier, vol. 91(1), pages 187-196.
- Zou, Deqiu & Ma, Xianfeng & Liu, Xiaoshi & Zheng, Pengjun & Cai, Baiming & Huang, Jianfeng & Guo, Jiangrong & Liu, Mo, 2017. "Experimental research of an air-source heat pump water heater using water-PCM for heat storage," Applied Energy, Elsevier, vol. 206(C), pages 784-792.
- Kumar, G. Senthil & Nagarajan, D. & Chidambaram, L.A. & Kumaresan, V. & Ding, Y. & Velraj, R., 2016. "Role of PCM addition on stratification behaviour in a thermal storage tank – An experimental study," Energy, Elsevier, vol. 115(P1), pages 1168-1178.
- Afshan, Mahboob E. & Selvakumar, A.S & Velraj, R. & Rajaraman, R., 2020. "Effect of aspect ratio and dispersed PCM balls on the charging performance of a latent heat thermal storage unit for solar thermal applications," Renewable Energy, Elsevier, vol. 148(C), pages 876-888.
- Kutlu, Cagri & Zhang, Yanan & Elmer, Theo & Su, Yuehong & Riffat, Saffa, 2020. "A simulation study on performance improvement of solar assisted heat pump hot water system by novel controllable crystallization of supercooled PCMs," Renewable Energy, Elsevier, vol. 152(C), pages 601-612.
- Ye, Yang & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2020. "Numerical simulation on the storage performance of a phase change materials based metal hydride hydrogen storage tank," Applied Energy, Elsevier, vol. 278(C).
- Rathod, Manish K. & Banerjee, Jyotirmay, 2013. "Thermal stability of phase change materials used in latent heat energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 246-258.
- Emhofer, Johann & Marx, Klemens & Sporr, Andreas & Barz, Tilman & Nitsch, Birgo & Wiesflecker, Michael & Pink, Werner, 2022. "Experimental demonstration of an air-source heat pump application using an integrated phase change material storage as a desuperheater for domestic hot water generation," Applied Energy, Elsevier, vol. 305(C).
- Mawire, Ashmore & Lefenya, Tlotlo M. & Ekwomadu, Chidiebere S. & Lentswe, Katlego A. & Shobo, Adedamola B., 2020. "Performance comparison of medium temperature domestic packed bed latent heat storage systems," Renewable Energy, Elsevier, vol. 146(C), pages 1897-1906.
- Wang, Zilong & Zhang, Hua & Huang, Huajie & Dou, Binlin & Huang, Xiuhui & Goula, Maria A., 2019. "The experimental investigation of the thermal stratification in a solar hot water tank," Renewable Energy, Elsevier, vol. 134(C), pages 862-874.
- Gado, Mohamed G. & Hassan, Hamdy, 2023. "Energy-saving potential of compression heat pump using thermal energy storage of phase change materials for cooling and heating applications," Energy, Elsevier, vol. 263(PE).
- Baohong Jin & Zhichao Liu & Yichuan Liao, 2023. "Exploring the Impact of Regional Integrated Energy Systems Performance by Energy Storage Devices Based on a Bi-Level Dynamic Optimization Model," Energies, MDPI, vol. 16(6), pages 1-21, March.
- Al-Azawii, Mohammad M.S. & Theade, Carter & Bueno, Pablo & Anderson, Ryan, 2019. "Experimental study of layered thermal energy storage in an air-alumina packed bed using axial pipe injections," Applied Energy, Elsevier, vol. 249(C), pages 409-422.
- Frazzica, Andrea & Manzan, Marco & Sapienza, Alessio & Freni, Angelo & Toniato, Giuseppe & Restuccia, Giovanni, 2016. "Experimental testing of a hybrid sensible-latent heat storage system for domestic hot water applications," Applied Energy, Elsevier, vol. 183(C), pages 1157-1167.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jin, Xin & Zhang, Huihui & Huang, Gongsheng & Lai, Alvin CK., 2021. "Experimental investigation on the dynamic thermal performance of the parallel solar-assisted air-source heat pump latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 180(C), pages 637-657.
- Wang, Zilong & Zhang, Hua & Huang, Huajie & Dou, Binlin & Huang, Xiuhui & Goula, Maria A., 2019. "The experimental investigation of the thermal stratification in a solar hot water tank," Renewable Energy, Elsevier, vol. 134(C), pages 862-874.
- Du, Ruxue & Wu, Minqiang & Wang, Siqi & Wu, Si & Wang, Ruzhu & Li, Tingxian, 2022. "Experimental investigation on high energy-density and power-density hydrated salt-based thermal energy storage," Applied Energy, Elsevier, vol. 325(C).
- Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
- Cong Zhou & Yizhen Li & Fenghao Wang & Zeyuan Wang & Qing Xia & Yuping Zhang & Jun Liu & Boyang Liu & Wanlong Cai, 2023. "A Review of the Performance Improvement Methods of Phase Change Materials: Application for the Heat Pump Heating System," Energies, MDPI, vol. 16(6), pages 1-21, March.
- Kutlu, Cagri & Zhang, Yanan & Elmer, Theo & Su, Yuehong & Riffat, Saffa, 2020. "A simulation study on performance improvement of solar assisted heat pump hot water system by novel controllable crystallization of supercooled PCMs," Renewable Energy, Elsevier, vol. 152(C), pages 601-612.
- Joseph Rendall & Fernando Karg Bulnes & Kyle Gluesenkamp & Ahmad Abu-Heiba & William Worek & Kashif Nawaz, 2021. "A Flow Rate Dependent 1D Model for Thermally Stratified Hot-Water Energy Storage," Energies, MDPI, vol. 14(9), pages 1-17, May.
- Ewelina Radomska & Lukasz Mika & Karol Sztekler & Lukasz Lis, 2020. "The Impact of Heat Exchangers’ Constructions on the Melting and Solidification Time of Phase Change Materials," Energies, MDPI, vol. 13(18), pages 1-44, September.
- Mao, Qianjun & Cao, Wenlong, 2023. "Effect of variable capsule size on energy storage performances in a high-temperature three-layered packed bed system," Energy, Elsevier, vol. 273(C).
- Jin, Xin & Wu, Fengping & Xu, Tao & Huang, Gongsheng & Wu, Huijun & Zhou, Xiaoqing & Wang, Dengjia & Liu, Yanfeng & Lai, Alvin CK., 2021. "Experimental investigation of the novel melting point modified Phase–Change material for heat pump latent heat thermal energy storage application," Energy, Elsevier, vol. 216(C).
- Jie Huang & Fei Xu & Zilong Wang & Hua Zhang, 2023. "An Experimental Investigation on the Performance of a Water Storage Tank with Sodium Acetate Trihydrate," Energies, MDPI, vol. 16(2), pages 1-14, January.
- Zauner, Christoph & Windholz, Bernd & Lauermann, Michael & Drexler-Schmid, Gerwin & Leitgeb, Thomas, 2020. "Development of an Energy Efficient Extrusion Factory employing a latent heat storage and a high temperature heat pump," Applied Energy, Elsevier, vol. 259(C).
- Du, Ruxue & Wu, Minqiang & Wang, Siqi & Wu, Si & Wang, Ruzhu & Li, Tingxian, 2024. "Integrated heat pump with phase change materials for space heating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
- María Gasque & Federico Ibáñez & Pablo González-Altozano, 2021. "Minimum Number of Experimental Data for the Thermal Characterization of a Hot Water Storage Tank," Energies, MDPI, vol. 14(16), pages 1-16, August.
- Agnieszka Malec & Tomasz Cholewa & Alicja Siuta-Olcha, 2021. "Influence of Cold Water Inlets and Obstacles on the Energy Efficiency of the Hot Water Production Process in a Hot Water Storage Tank," Energies, MDPI, vol. 14(20), pages 1-26, October.
- Yang, Sheng & Shao, Xue-Feng & Luo, Jia-Hao & Baghaei Oskouei, Seyedmohsen & Bayer, Özgür & Fan, Li-Wu, 2023. "A novel cascade latent heat thermal energy storage system consisting of erythritol and paraffin wax for deep recovery of medium-temperature industrial waste heat," Energy, Elsevier, vol. 265(C).
- Huang, Ransisi & Mahvi, Allison & James, Nelson & Kozubal, Eric & Woods, Jason, 2024. "Evaluation of phase change thermal storage in a cascade heat pump," Applied Energy, Elsevier, vol. 359(C).
- Englmair, Gerald & Moser, Christoph & Furbo, Simon & Dannemand, Mark & Fan, Jianhua, 2018. "Design and functionality of a segmented heat-storage prototype utilizing stable supercooling of sodium acetate trihydrate in a solar heating system," Applied Energy, Elsevier, vol. 221(C), pages 522-534.
- Dong, Xiaofei & Zhao, Hongxia & Li, Hailong & Fucucci, Giacomo & Zheng, Qingrong & Zhao, Honghua & Pu, Jinhuan, 2024. "A novel design of a metal hydride reactor integrated with phase change material for H2 storage," Applied Energy, Elsevier, vol. 367(C).
- Diana Isabel Berrocal & Juan Blandon Rodriguez & Maria De Los Angeles Ortega Del Rosario & Itamar Harris & Arthur M. James Rivas, 2024. "Heat Transfer Enhancements Assessment in Hot Water Generation with Phase Change Materials (PCMs): A Review," Energies, MDPI, vol. 17(10), pages 1-35, May.
More about this item
Keywords
Heat pump water heater; Phase change materials; Optimization; Thermal energy storage;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:185:y:2023:i:c:s1364032123005130. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.