IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5944-d1530156.html
   My bibliography  Save this article

Performance and Optimization of Novel Solar-Assisted Heat Pump System with Hybrid Thermal Energy Storage

Author

Listed:
  • Chaojie Ren

    (School of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
    School of Mechanical Engineering, Quzhou University, Quzhou 324000, China)

  • Jie Lin

    (School of Mechanical Engineering, Quzhou University, Quzhou 324000, China)

  • Nini Guo

    (School of Mechanical Engineering, Quzhou University, Quzhou 324000, China)

Abstract

In this study, a novel solar-assisted heat pump (SAHP) system with hybrid thermal energy storage is proposed. The system can address the problems of large space requirements and the unstable heating of solar heating systems and tackle the energy-efficient degradation of air source heat pumps (ASHPs) in winter. This study utilized TRNSYS18 software to establish a dynamic simulation model of the system, including the system’s model construction and the control scheme’s design. This performance study focused on analyzing the effects of the collector area and thermal energy storage (TES). The results show that with the increase in the collector area, the collector and power generation efficiencies decrease, and the system performance coefficient improves; the rise in the volume of TES leads to the collector and power generation efficiencies first increasing, and then they tend to stabilize, and the performance coefficient shows a trend of firstly increasing, and then decreasing. In terms of parameter optimization, a target optimization scheme and an evaluation model are constructed. The results indicate that the heating demand for a 116-square-meter building in the Tianjin area is met. The equivalent annual cost (EAC) of the system cost is the lowest, which is CNY 3963, when the collector area of the system is 31 square meters, the heat storage tank (HST) volume is 0.4 cubic meters and the phase-change energy storage (PCES) volume is 0.2 cubic meters. The payback period of the system is 10.59 years, which was compared to that of the ASHP. The further comparison of the economic feasibility of the system in the Lhasa, Shenyang, and Tianjin regions shows that the Lhasa region has the lowest EAC and payback period of CNY 1579 and 8.53 years, respectively, while the payback periods of Tianjin and Shenyang are 10.59 and 10.3 years, with EACs of CNY 3963 and CNY 5096, respectively.

Suggested Citation

  • Chaojie Ren & Jie Lin & Nini Guo, 2024. "Performance and Optimization of Novel Solar-Assisted Heat Pump System with Hybrid Thermal Energy Storage," Energies, MDPI, vol. 17(23), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5944-:d:1530156
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5944/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5944/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Manyu & Wei, Chu, 2024. "Toward sustainable heating: Assessment of the carbon mitigation potential from residential heating in northern rural China," Energy Policy, Elsevier, vol. 190(C).
    2. Lin, Ying & Fan, Yubin & Yu, Meng & Jiang, Long & Zhang, Xuejun, 2022. "Performance investigation on an air source heat pump system with latent heat thermal energy storage," Energy, Elsevier, vol. 239(PA).
    3. Wu, Jianghong & Yang, Zhaoguang & Wu, Qinghao & Zhu, Yujuan, 2012. "Transient behavior and dynamic performance of cascade heat pump water heater with thermal storage system," Applied Energy, Elsevier, vol. 91(1), pages 187-196.
    4. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Liu, Zichu, 2022. "Performance and optimization of a novel solar-air source heat pump building energy supply system with energy storage," Applied Energy, Elsevier, vol. 324(C).
    5. Yıldız, Çağatay & Seçilmiş, Mustafa & Arıcı, Müslüm & Mert, Mehmet Selçuk & Nižetić, Sandro & Karabay, Hasan, 2023. "An experimental study on a solar-assisted heat pump incorporated with PCM based thermal energy storage unit," Energy, Elsevier, vol. 278(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Ransisi & Mahvi, Allison & James, Nelson & Kozubal, Eric & Woods, Jason, 2024. "Evaluation of phase change thermal storage in a cascade heat pump," Applied Energy, Elsevier, vol. 359(C).
    2. Shao, Suola & Zhang, Huan & You, Shijun & Zheng, Wandong & Jiang, Lingfei, 2019. "Thermal performance analysis of a new refrigerant-heated radiator coupled with air-source heat pump heating system," Applied Energy, Elsevier, vol. 247(C), pages 78-88.
    3. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Bai, Ze & Shi, Junzhang, 2024. "Energy and exergy analysis of a novel dual-source heat pump system with integrated phase change energy storage," Renewable Energy, Elsevier, vol. 222(C).
    4. Cong Zhou & Yizhen Li & Fenghao Wang & Zeyuan Wang & Qing Xia & Yuping Zhang & Jun Liu & Boyang Liu & Wanlong Cai, 2023. "A Review of the Performance Improvement Methods of Phase Change Materials: Application for the Heat Pump Heating System," Energies, MDPI, vol. 16(6), pages 1-21, March.
    5. Li, Dong & Cai, Jiangkuo & Arıcı, Müslüm & Zhao, Xuefeng & Meng, Lan & Wu, Yangyang & Gao, Meng & Wang, Di, 2024. "Operational characteristics of solar-gas combined heating water system with phase change heat storage units for oilfield hot water stations," Energy, Elsevier, vol. 302(C).
    6. Chen, Zhidong & Su, Chao & Wu, Zexuan & Wang, Weijia & Chen, Lei & Yang, Lijun & Kong, Yanqiang & Du, Xiaoze, 2023. "Operation strategy and performance analyses of a distributed energy system incorporating concentrating PV/T and air source heat pump for heating supply," Applied Energy, Elsevier, vol. 341(C).
    7. Rendall, Joseph & Elatar, Ahmed & Nawaz, Kashif & Sun, Jian, 2023. "Medium-temperature phase change material integration in domestic heat pump water heaters for improved thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    8. Beyne, W. & T'Jollyn, I. & Lecompte, S. & Cabeza, L.F. & De Paepe, M., 2023. "Standardised methods for the determination of key performance indicators for thermal energy storage heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    9. Samuel Boahen & Jong Min Choi, 2019. "A Study on the Performance of a Cascade Heat Pump for Generating Hot Water," Energies, MDPI, vol. 12(22), pages 1-20, November.
    10. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Jing, Heran, 2022. "Operation mode performance and optimization of a novel coupled air and ground source heat pump system with energy storage: Case study of a hotel building," Renewable Energy, Elsevier, vol. 201(P1), pages 889-903.
    11. Le, Khoa Xuan & Huang, Ming Jun & Shah, Nikhilkumar N. & Wilson, Christopher & Artain, Paul Mac & Byrne, Raymond & Hewitt, Neil J., 2019. "Techno-economic assessment of cascade air-to-water heat pump retrofitted into residential buildings using experimentally validated simulations," Applied Energy, Elsevier, vol. 250(C), pages 633-652.
    12. Vallati, Andrea & Di Matteo, Miriam & Sundararajan, Mukund & Muzi, Francesco & Fiorini, Costanza Vittoria, 2024. "Development and optimization of an energy saving strategy for social housing applications by water source-heat pump integrating photovoltaic-thermal panels," Energy, Elsevier, vol. 301(C).
    13. Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
    14. Yijiang Zeng & Shengyu Li & Jun Lu & Xiaodong Li & Dingding Xing & Jipan Xiao & Zhanhao Zhang & Leihong Li & Xuhui Shi, 2023. "Research on Energy Savings of an Air-Source Heat Pump Hot Water System in a College Student’s Dormitory Building," Sustainability, MDPI, vol. 15(13), pages 1-24, June.
    15. Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
    16. Lyu, Weihua & Wang, Zhichao & Li, Xiaofeng & Xu, Zhaowei & Pu, Zewei & Zhao, Wenyuan, 2024. "A simplified model for correcting the heating capacity of air source heat pumps in high-altitude plateau areas," Energy, Elsevier, vol. 305(C).
    17. Yang, Seung-Hwan & Rhee, Joong Yong, 2013. "Utilization and performance evaluation of a surplus air heat pump system for greenhouse cooling and heating," Applied Energy, Elsevier, vol. 105(C), pages 244-251.
    18. Wu, Wei & Ran, Siyuan & Shi, Wenxing & Wang, Baolong & Li, Xianting, 2016. "NH3-H2O water source absorption heat pump (WSAHP) for low temperature heating: Experimental investigation on the off-design performance," Energy, Elsevier, vol. 115(P1), pages 697-710.
    19. Josué F. Rosales-Pérez & Andrés Villarruel-Jaramillo & José A. Romero-Ramos & Manuel Pérez-García & José M. Cardemil & Rodrigo Escobar, 2023. "Hybrid System of Photovoltaic and Solar Thermal Technologies for Industrial Process Heat," Energies, MDPI, vol. 16(5), pages 1-45, February.
    20. Jin, Xin & Wu, Fengping & Xu, Tao & Huang, Gongsheng & Wu, Huijun & Zhou, Xiaoqing & Wang, Dengjia & Liu, Yanfeng & Lai, Alvin CK., 2021. "Experimental investigation of the novel melting point modified Phase–Change material for heat pump latent heat thermal energy storage application," Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5944-:d:1530156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.