Effect of compression ratio on performance and emissions of a stratified-charge DISI (direct injection spark ignition) methanol engine
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2015.12.062
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Najafi, G. & Ghobadian, B. & Tavakoli, T. & Buttsworth, D.R. & Yusaf, T.F. & Faizollahnejad, M., 2009. "Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network," Applied Energy, Elsevier, vol. 86(5), pages 630-639, May.
- Topgül, Tolga & Yücesu, Hüseyin Serdar & Çinar, Can & Koca, Atilla, 2006. "The effects of ethanol–unleaded gasoline blends and ignition timing on engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 31(15), pages 2534-2542.
- Zhen, Xudong & Wang, Yang & Xu, Shuaiqing & Zhu, Yongsheng, 2013. "Study of knock in a high compression ratio spark-ignition methanol engine by multi-dimensional simulation," Energy, Elsevier, vol. 50(C), pages 150-159.
- Balki, Mustafa Kemal & Sayin, Cenk, 2014. "The effect of compression ratio on the performance, emissions and combustion of an SI (spark ignition) engine fueled with pure ethanol, methanol and unleaded gasoline," Energy, Elsevier, vol. 71(C), pages 194-201.
- Liang, Chen & Ji, Changwei & Liu, Xiaolong, 2011. "Combustion and emissions performance of a DME-enriched spark-ignited methanol engine at idle condition," Applied Energy, Elsevier, vol. 88(11), pages 3704-3711.
- Sayin, Cenk & Balki, Mustafa Kemal, 2015. "Effect of compression ratio on the emission, performance and combustion characteristics of a gasoline engine fueled with iso-butanol/gasoline blends," Energy, Elsevier, vol. 82(C), pages 550-555.
- Gong, Chang-Ming & Huang, Kuo & Jia, Jing-Long & Su, Yan & Gao, Qing & Liu, Xun-Jun, 2011. "Regulated emissions from a direct-injection spark-ignition methanol engine," Energy, Elsevier, vol. 36(5), pages 3379-3387.
- Zhao, Jianbiao & Ma, Fanhua & Xiong, Xingwang & Deng, Jiao & Wang, Lijun & Naeve, Nashay & Zhao, Shuli, 2013. "Effects of compression ratio on the combustion and emission of a hydrogen enriched natural gas engine under different excess air ratio," Energy, Elsevier, vol. 59(C), pages 658-665.
- Zhen, Xudong & Wang, Yang, 2013. "Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics," Energy, Elsevier, vol. 59(C), pages 549-558.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Meng, Hao & Ji, Changwei & Su, Teng & Yang, Jinxin & Chang, Ke & Xin, Gu & Wang, Shuofeng, 2022. "Analyzing characteristics of knock in a hydrogen-fueled Wankel rotary engine," Energy, Elsevier, vol. 250(C).
- Schröder, Lukas & Hillenbrand, Thomas & Brüggemann, Dieter, 2024. "Evaluation of the combustion process of directly injected methane in a rapid compression machine with a laser-based ignition system and an electrical ignition system," Energy, Elsevier, vol. 289(C).
- Sahebjamei, M. & Amani, E. & Nobari, M.R.H., 2019. "Numerical analysis of radial and angular stratification in turbulent swirling flames," Energy, Elsevier, vol. 173(C), pages 523-539.
- Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
- Fan, Baowei & Pan, Jianfeng & Yang, Wenming & Pan, Zhenhua & Bani, Stephen & Chen, Wei & He, Ren, 2017. "Combined effect of injection timing and injection angle on mixture formation and combustion process in a direct injection (DI) natural gas rotary engine," Energy, Elsevier, vol. 128(C), pages 519-530.
- Nuthan Prasad, B.S. & Pandey, Jayashish Kumar & Kumar, G.N., 2020. "Impact of changing compression ratio on engine characteristics of an SI engine fueled with equi-volume blend of methanol and gasoline," Energy, Elsevier, vol. 191(C).
- Gong, Changming & Yi, Lin & Zhang, Zilei & Sun, Jingzhen & Liu, Fenghua, 2020. "Assessment of ultra-lean burn characteristics for a stratified-charge direct-injection spark-ignition methanol engine under different high compression ratios," Applied Energy, Elsevier, vol. 261(C).
- Varun, & Singh, Paramvir & Tiwari, Samaresh Kumar & Singh, Rituparn & Kumar, Naresh, 2017. "Modification in combustion chamber geometry of CI engines for suitability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1016-1033.
- Wang, Yongjian & Long, Wuqiang & Dong, Pengbo & Tian, Hua & Wang, Yang & Xie, Chunyang & Tang, Yuanyou & Lu, Mingfei & Zhang, Weiqi, 2024. "Experimental investigation of knock control criterion considering power output loss for a PFI SI methanol marine engine," Energy, Elsevier, vol. 303(C).
- Dinesh, M.H. & Pandey, Jayashish Kumar & Kumar, G.N., 2022. "Effect of parallel LPG fuelling in a methanol fuelled SI engine under variable compression ratio," Energy, Elsevier, vol. 239(PC).
- Gong, Changming & Sun, Jingzhen & Liu, Fenghua, 2021. "Numerical research on combustion and emissions behaviors of a medium compression ratio direct-injection twin-spark plug synchronous ignition methanol engine under steady-state lean-burn conditions," Energy, Elsevier, vol. 215(PB).
- Gong, Changming & Zhang, Zilei & Sun, Jingzhen & Chen, Yulin & Liu, Fenghua, 2020. "Computational study of nozzle spray-line distribution effects on stratified mixture formation, combustion and emissions of a high compression ratio DISI methanol engine under lean-burn condition," Energy, Elsevier, vol. 205(C).
- Kumar, T. Sathish & Ashok, B., 2021. "Critical review on combustion phenomena of low carbon alcohols in SI engine with its challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Shen, Bo & Su, Yan & Yu, Hao & Zhang, Yulin & Lang, Maochun & Yang, He, 2023. "Experimental study on the effect of injection strategies on the combustion and emissions characteristic of gasoline/methanol dual-fuel turbocharged engine under high load," Energy, Elsevier, vol. 282(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kumar, T. Sathish & Ashok, B., 2021. "Critical review on combustion phenomena of low carbon alcohols in SI engine with its challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Zhen, Xudong & Wang, Yang, 2015. "An overview of methanol as an internal combustion engine fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 477-493.
- Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
- Gong, Changming & Yi, Lin & Zhang, Zilei & Sun, Jingzhen & Liu, Fenghua, 2020. "Assessment of ultra-lean burn characteristics for a stratified-charge direct-injection spark-ignition methanol engine under different high compression ratios," Applied Energy, Elsevier, vol. 261(C).
- Yusri, I.M. & Mamat, R. & Najafi, G. & Razman, A. & Awad, Omar I. & Azmi, W.H. & Ishak, W.F.W. & Shaiful, A.I.M., 2017. "Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 169-181.
- Awad, Omar I. & Mamat, R. & Ibrahim, Thamir K. & Hammid, Ali Thaeer & Yusri, I.M. & Hamidi, Mohd Adnin & Humada, Ali M. & Yusop, A.F., 2018. "Overview of the oxygenated fuels in spark ignition engine: Environmental and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 394-408.
- Thakur, Amit Kumar & Kaviti, Ajay Kumar & Mehra, Roopesh & Mer, K.K.S., 2017. "Progress in performance analysis of ethanol-gasoline blends on SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 324-340.
- Zhen, Xudong & Wang, Yang, 2015. "Numerical analysis on original emissions for a spark ignition methanol engine based on detailed chemical kinetics," Renewable Energy, Elsevier, vol. 81(C), pages 43-51.
- Thangavelu, Saravana Kannan & Ahmed, Abu Saleh & Ani, Farid Nasir, 2016. "Review on bioethanol as alternative fuel for spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 820-835.
- Gong, Changming & Yi, Lin & Wang, Kang & Huang, Kuo & Liu, Fenghua, 2020. "Numerical modeling of plasma-assisted combustion effects on firing and intermediates in the combustion process of methanol–air mixtures," Energy, Elsevier, vol. 192(C).
- Awad, Omar I. & Mamat, R. & Ali, Obed M. & Sidik, N.A.C. & Yusaf, T. & Kadirgama, K. & Kettner, Maurice, 2018. "Alcohol and ether as alternative fuels in spark ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2586-2605.
- Muhamad Norkhizan Abdullah & Ahmad Fitri Yusop & Rizalman Mamat & Mohd Adnin Hamidi & Kumarasamy Sudhakar & Talal Yusaf, 2023. "Sustainable Biofuels from First Three Alcohol Families: A Critical Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
- Liu, Hui & Wang, Zhi & Wang, Jianxin, 2014. "Methanol-gasoline DFSI (dual-fuel spark ignition) combustion with dual-injection for engine knock suppression," Energy, Elsevier, vol. 73(C), pages 686-693.
- Chintala, V. & Subramanian, K.A., 2015. "Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 87(C), pages 448-462.
- Zhen, Xudong & Wang, Yang, 2013. "Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics," Energy, Elsevier, vol. 59(C), pages 549-558.
- Süleyman Şimşek & Hasan Saygın & Bülent Özdalyan, 2020. "Improvement of Fusel Oil Features and Effect of Its Use in Different Compression Ratios for an SI Engine on Performance and Emission," Energies, MDPI, vol. 13(7), pages 1-14, April.
- Çay, Yusuf & Korkmaz, Ibrahim & Çiçek, Adem & Kara, Fuat, 2013. "Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network," Energy, Elsevier, vol. 50(C), pages 177-186.
- Michał Wojcieszyk & Lotta Knuutila & Yuri Kroyan & Mário de Pinto Balsemão & Rupali Tripathi & Juha Keskivali & Anna Karvo & Annukka Santasalo-Aarnio & Otto Blomstedt & Martti Larmi, 2021. "Performance of Anisole and Isobutanol as Gasoline Bio-Blendstocks for Spark Ignition Engines," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
- Nuthan Prasad, B.S. & Pandey, Jayashish Kumar & Kumar, G.N., 2020. "Impact of changing compression ratio on engine characteristics of an SI engine fueled with equi-volume blend of methanol and gasoline," Energy, Elsevier, vol. 191(C).
- Gong, Changming & Li, Dong & Liu, Jiajun & Liu, Fenghua, 2024. "Computational study of excess air ratio impacts on performances of a spark-ignition H2/methanol dual-injection engine," Energy, Elsevier, vol. 289(C).
More about this item
Keywords
Stratified-charge; Direct-injection spark-ignition (DISI); Methanol engine; Compression ratio; Performance; Emission;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:96:y:2016:i:c:p:166-175. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.