IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i12p6862-6866.html
   My bibliography  Save this article

A modified diesel engine for natural gas operation: Performance and emission tests

Author

Listed:
  • Poompipatpong, Chedthawut
  • Cheenkachorn, Kraipat

Abstract

A diesel engine was modified for natural gas operation to optimize performance using gaseous fuel. A variation of combustion ratios (CR) including 9.0:1, 9.5:1, 10.0:1 and 10.5:1 was utilized to evaluate engine performance and emissions from the same engine over the engine speeds between 1000 and 4000 rpm. Tested engine performance parameters include brake torque, brake power, specific fuel consumption (SFC) and brake thermal efficiency. Emissions tests recorded total hydrocarbon (THC), nitrogen oxides (NOx) and carbon monoxide (CO). The results showed that a CR of 9.5:1 had the highest thermal efficiency and the lowest SFC while a CR of 10:1 showed a high torque at low speed. THC emissions were directly proportional to the CR. NOx emissions increased with increasing CR and then declined after a CR of 10:1.

Suggested Citation

  • Poompipatpong, Chedthawut & Cheenkachorn, Kraipat, 2011. "A modified diesel engine for natural gas operation: Performance and emission tests," Energy, Elsevier, vol. 36(12), pages 6862-6866.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:12:p:6862-6866
    DOI: 10.1016/j.energy.2011.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211006682
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Selim, Mohamed Y.E, 2001. "Pressure–time characteristics in diesel engine fueled with natural gas," Renewable Energy, Elsevier, vol. 22(4), pages 473-489.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Poompipatpong, Chedthawut & Kengpol, Athakorn, 2015. "Design of a decision support methodology using response surface for torque comparison: An empirical study on an engine fueled with waste plastic pyrolysis oil," Energy, Elsevier, vol. 82(C), pages 850-856.
    2. Li, Menghan & Zhang, Qiang & Liu, Xiaori & Ma, Yuxian & Zheng, Qingping, 2018. "Soot emission prediction in pilot ignited direct injection natural gas engine based on n-heptane/toluene/methane/PAH mechanism," Energy, Elsevier, vol. 163(C), pages 660-681.
    3. Zhang, Qiang & Li, Menghan & Li, Guoxiang & Shao, Sidong & Li, Peixin, 2017. "Transient emission characteristics of a heavy-duty natural gas engine at stoichiometric operation with EGR and TWC," Energy, Elsevier, vol. 132(C), pages 225-237.
    4. Xi, Haoran & Fu, Jianqin & Zhou, Feng & Yu, Juan & Liu, Jingping & Meng, Zhongwei, 2023. "Experimental and numerical studies of thermal power conversion and energy flow under high-compression ratios of a liquid methane engine (LME)," Energy, Elsevier, vol. 284(C).
    5. Li, Weifeng & Liu, Zhongchang & Wang, Zhongshu, 2016. "Experimental and theoretical analysis of the combustion process at low loads of a diesel natural gas dual-fuel engine," Energy, Elsevier, vol. 94(C), pages 728-741.
    6. Hotta, Santosh Kumar & Sahoo, Niranjan & Mohanty, Kaustubha & Kulkarni, Vinayak, 2020. "Ignition timing and compression ratio as effective means for the improvement in the operating characteristics of a biogas fueled spark ignition engine," Renewable Energy, Elsevier, vol. 150(C), pages 854-867.
    7. Li, Menghan & Zhang, Qiang & Li, Guoxiang & Shao, Sidong, 2015. "Experimental investigation on performance and heat release analysis of a pilot ignited direct injection natural gas engine," Energy, Elsevier, vol. 90(P2), pages 1251-1260.
    8. Geng, Peng & Cao, Erming & Tan, Qinming & Wei, Lijiang, 2017. "Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 523-534.
    9. Zhao, Jianbiao & Ma, Fanhua & Xiong, Xingwang & Deng, Jiao & Wang, Lijun & Naeve, Nashay & Zhao, Shuli, 2013. "Effects of compression ratio on the combustion and emission of a hydrogen enriched natural gas engine under different excess air ratio," Energy, Elsevier, vol. 59(C), pages 658-665.
    10. Abu-Jrai, Ahmad M. & Al-Muhtaseb, Ala'a H. & Hasan, Ahmad O., 2017. "Combustion, performance, and selective catalytic reduction of NOx for a diesel engine operated with combined tri fuel (H2, CH4, and conventional diesel)," Energy, Elsevier, vol. 119(C), pages 901-910.
    11. Zhen, Xudong & Wang, Yang, 2015. "Numerical analysis on original emissions for a spark ignition methanol engine based on detailed chemical kinetics," Renewable Energy, Elsevier, vol. 81(C), pages 43-51.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ong, Zhi Chao & Mohd Mishani, Mohd Bakar & Chong, Wen Tong & Soon, Roon Sheng & Ong, Hwai Chyuan & Ismail, Zubaidah, 2017. "Identification of optimum Calophyllum inophyllum bio-fuel blend in diesel engine using advanced vibration analysis technique," Renewable Energy, Elsevier, vol. 109(C), pages 295-304.
    2. Florian Zurbriggen & Richard Hutter & Christopher Onder, 2016. "Diesel-Minimal Combustion Control of a Natural Gas-Diesel Engine," Energies, MDPI, vol. 9(1), pages 1-19, January.
    3. Andrey Kozlov & Vadim Grinev & Alexey Terenchenko & Gennady Kornilov, 2019. "An Investigation of the Effect of Fuel Supply Parameters on Combustion Process of the Heavy-Duty Dual-Fuel Diesel Ignited Gas Engine," Energies, MDPI, vol. 12(12), pages 1-20, June.
    4. Md Arman Arefin & Md Nurun Nabi & Md Washim Akram & Mohammad Towhidul Islam & Md Wahid Chowdhury, 2020. "A Review on Liquefied Natural Gas as Fuels for Dual Fuel Engines: Opportunities, Challenges and Responses," Energies, MDPI, vol. 13(22), pages 1-19, November.
    5. Park, Jungsoo & Lee, Kyo Seung & Kim, Min Su & Jung, Dohoy, 2014. "Numerical analysis of a dual-fueled CI (compression ignition) engine using Latin hypercube sampling and multi-objective Pareto optimization," Energy, Elsevier, vol. 70(C), pages 278-287.
    6. Benbellil, Messaoud Abdelalli & Lounici, Mohand Said & Loubar, Khaled & Tazerout, Mohand, 2022. "Investigation of natural gas enrichment with high hydrogen participation in dual fuel diesel engine," Energy, Elsevier, vol. 243(C).
    7. Yang, Bo & Xi, Chengxun & Wei, Xing & Zeng, Ke & Lai, Ming-Chia, 2015. "Parametric investigation of natural gas port injection and diesel pilot injection on the combustion and emissions of a turbocharged common rail dual-fuel engine at low load," Applied Energy, Elsevier, vol. 143(C), pages 130-137.
    8. Tobias Ott & Christopher Onder & Lino Guzzella, 2013. "Hybrid-Electric Vehicle with Natural Gas-Diesel Engine," Energies, MDPI, vol. 6(7), pages 1-22, July.
    9. Hosseini, Seyyed Hassan & Taghizadeh-Alisaraei, Ahmad & Ghobadian, Barat & Abbaszadeh-Mayvan, Ahmad, 2020. "Artificial neural network modeling of performance, emission, and vibration of a CI engine using alumina nano-catalyst added to diesel-biodiesel blends," Renewable Energy, Elsevier, vol. 149(C), pages 951-961.
    10. Jatoth, Ramachander & Gugulothu, Santhosh Kumar & Ravi kiran Sastry, G., 2021. "Experimental study of using biodiesel and low cetane alcohol as the pilot fuel on the performance and emission trade-off study in the diesel/compressed natural gas dual fuel combustion mode," Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:12:p:6862-6866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.