Mixtures of rubber tyre and plastic wastes pyrolysis: A kinetic study
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2013.06.033
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wallman, P.H & Thorsness, C.B & Winter, J.D, 1998. "Hydrogen production from wastes," Energy, Elsevier, vol. 23(4), pages 271-278.
- Chiarioni, A. & Reverberi, A.P. & Fabiano, B. & Dovì, V.G., 2006. "An improved model of an ASR pyrolysis reactor for energy recovery," Energy, Elsevier, vol. 31(13), pages 2460-2468.
- Li, A.M & Li, X.D & Li, S.Q & Ren, Y & Shang, N & Chi, Y & Yan, J.H & Cen, K.F, 1999. "Experimental studies on municipal solid waste pyrolysis in a laboratory-scale rotary kiln," Energy, Elsevier, vol. 24(3), pages 209-218.
- Mani, M. & Nagarajan, G., 2009. "Influence of injection timing on performance, emission and combustion characteristics of a DI diesel engine running on waste plastic oil," Energy, Elsevier, vol. 34(10), pages 1617-1623.
- Lee, Jung Soo & Kim, Sang Done, 1996. "Gasification kinetics of waste tire-char with CO2 in a thermobalance reactor," Energy, Elsevier, vol. 21(5), pages 343-352.
- Dai, Xianwen & Yin, Xiuli & Wu, Chuangzhi & Zhang, Wennan & Chen, Yong, 2001. "Pyrolysis of waste tires in a circulating fluidized-bed reactor," Energy, Elsevier, vol. 26(4), pages 385-399.
- Mani, M. & Nagarajan, G. & Sampath, S., 2011. "Characterisation and effect of using waste plastic oil and diesel fuel blends in compression ignition engine," Energy, Elsevier, vol. 36(1), pages 212-219.
- Singhabhandhu, Ampaitepin & Tezuka, Tetsuo, 2010. "The waste-to-energy framework for integrated multi-waste utilization: Waste cooking oil, waste lubricating oil, and waste plastics," Energy, Elsevier, vol. 35(6), pages 2544-2551.
- Tabasová, Andrea & Kropáč, Jiří & Kermes, Vít & Nemet, Andreja & Stehlík, Petr, 2012. "Waste-to-energy technologies: Impact on environment," Energy, Elsevier, vol. 44(1), pages 146-155.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Seljak, Tine & Rodman Oprešnik, Samuel & Katrašnik, Tomaž, 2014. "Microturbine combustion and emission characterisation of waste polymer-derived fuels," Energy, Elsevier, vol. 77(C), pages 226-234.
- Bujak, Janusz Wojciech, 2015. "Production of waste energy and heat in hospital facilities," Energy, Elsevier, vol. 91(C), pages 350-362.
- Kunwar, Bidhya & Cheng, H.N. & Chandrashekaran, Sriram R & Sharma, Brajendra K, 2016. "Plastics to fuel: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 421-428.
- Tokmurzin, Diyar & Kuspangaliyeva, Botagoz & Aimbetov, Berik & Abylkhani, Bexultan & Inglezakis, Vassilis & Anthony, Edward J. & Sarbassov, Yerbol, 2020. "Characterization of solid char produced from pyrolysis of the organic fraction of municipal solid waste, high volatile coal and their blends," Energy, Elsevier, vol. 191(C).
- Sharma, Abhishek & Murugan, S., 2017. "Effect of nozzle opening pressure on the behaviour of a diesel engine running with non-petroleum fuel," Energy, Elsevier, vol. 127(C), pages 236-246.
- Li, Dan & Lei, Shijun & Rajput, Gulzeb & Zhong, Lei & Ma, Wenchao & Chen, Guanyi, 2021. "Study on the co-pyrolysis of waste tires and plastics," Energy, Elsevier, vol. 226(C).
- Bujak, Janusz Wojciech, 2015. "Heat recovery from thermal treatment of medical waste," Energy, Elsevier, vol. 90(P2), pages 1721-1732.
- Mohammad I. Jahirul & Farhad M. Hossain & Mohammad G. Rasul & Ashfaque Ahmed Chowdhury, 2021. "A Review on the Thermochemical Recycling of Waste Tyres to Oil for Automobile Engine Application," Energies, MDPI, vol. 14(13), pages 1-18, June.
- Bujak, Janusz Wojciech, 2015. "Thermal utilization (treatment) of plastic waste," Energy, Elsevier, vol. 90(P2), pages 1468-1477.
- Oyedun, Adetoyese Olajire & Gebreegziabher, Tesfaldet & Ng, Denny K.S. & Hui, Chi Wai, 2014. "Mixed-waste pyrolysis of biomass and plastics waste – A modelling approach to reduce energy usage," Energy, Elsevier, vol. 75(C), pages 127-135.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bujak, Janusz Wojciech, 2015. "Thermal utilization (treatment) of plastic waste," Energy, Elsevier, vol. 90(P2), pages 1468-1477.
- Bujak, Janusz Wojciech, 2015. "Production of waste energy and heat in hospital facilities," Energy, Elsevier, vol. 91(C), pages 350-362.
- Bujak, Janusz Wojciech, 2015. "Heat recovery from thermal treatment of medical waste," Energy, Elsevier, vol. 90(P2), pages 1721-1732.
- Sri Devi Kumari, T. & Jebaraj, Adriel J.J. & Raj, T. Antony & Jeyakumar, D. & Kumar, T. Prem, 2016. "A kish graphitic lithium-insertion anode material obtained from non-biodegradable plastic waste," Energy, Elsevier, vol. 95(C), pages 483-493.
- Das, Amar Kumar & Hansdah, Dulari & Panda, Achyut Kumar, 2021. "Thermal balancing and exergetic performance evaluation of a compression ignition engine fuelled with waste plastic pyrolytic oil and different fuel additives," Energy, Elsevier, vol. 229(C).
- Zhang, Menghui & Qi, Yongfeng & Zhang, Wan & Wang, Meiting & Li, Jingyi & Lu, Yi & Zhang, Sheng & He, Jiazheng & Cao, Hao & Tao, Xuan & Xu, Hanlu & Zhang, Sheng, 2024. "A review on waste tires pyrolysis for energy and material recovery from the optimization perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
- Zhou, Hui & Meng, AiHong & Long, YanQiu & Li, QingHai & Zhang, YanGuo, 2014. "An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 107-122.
- Kalargaris, Ioannis & Tian, Guohong & Gu, Sai, 2017. "The utilisation of oils produced from plastic waste at different pyrolysis temperatures in a DI diesel engine," Energy, Elsevier, vol. 131(C), pages 179-185.
- Panneerselvam, N. & Murugesan, A. & Vijayakumar, C. & Kumaravel, A. & Subramaniam, D. & Avinash, A., 2015. "Effects of injection timing on bio-diesel fuelled engine characteristics—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 17-31.
- Othman, Mohd Fahmi & Adam, Abdullah & Najafi, G. & Mamat, Rizalman, 2017. "Green fuel as alternative fuel for diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 694-709.
- Das, Amar Kumar & Sahu, Santosh Kumar & Panda, Achyut Kumar, 2022. "Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Amir Rowhani & Thomas J. Rainey, 2016. "Scrap Tyre Management Pathways and Their Use as a Fuel—A Review," Energies, MDPI, vol. 9(11), pages 1-26, October.
- Heena Panchasara & Nanjappa Ashwath, 2021. "Effects of Pyrolysis Bio-Oils on Fuel Atomisation—A Review," Energies, MDPI, vol. 14(4), pages 1-22, February.
- Murugan, S. & Gu, Sai, 2015. "Research and development activities in pyrolysis – Contributions from Indian scientific community – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 282-295.
- Riaz Ahmad & Gengyuan Liu & Remo Santagata & Marco Casazza & Jingyan Xue & Kifayatullah Khan & Javed Nawab & Sergio Ulgiati & Massimiliano Lega, 2019. "LCA of Hospital Solid Waste Treatment Alternatives in a Developing Country: The Case of District Swat, Pakistan," Sustainability, MDPI, vol. 11(13), pages 1-20, June.
- Tsai, Wen-Tien, 2011. "An analysis of used lubricant recycling, energy utilization and its environmental benefit in Taiwan," Energy, Elsevier, vol. 36(7), pages 4333-4339.
- Jou, Chih-Ju G. & Wu, Chung-Rung & Lee, Chien-Li, 2010. "Reduction of energy cost and CO2 emission for the furnace using energy recovered from waste tail-gas," Energy, Elsevier, vol. 35(3), pages 1232-1236.
- Khatha Wathakit & Ekarong Sukjit & Chalita Kaewbuddee & Somkiat Maithomklang & Niti Klinkaew & Pansa Liplap & Weerachai Arjharn & Jiraphon Srisertpol, 2021. "Characterization and Impact of Waste Plastic Oil in a Variable Compression Ratio Diesel Engine," Energies, MDPI, vol. 14(8), pages 1-18, April.
- Hossein Nami & Amjad Anvari-Moghaddam & Ahmad Arabkoohsar & Amir Reza Razmi, 2020. "4E Analyses of a Hybrid Waste-Driven CHP–ORC Plant with Flue Gas Condensation," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
- Piotr Łagowski & Grzegorz Wcisło & Dariusz Kurczyński, 2022. "Comparison of the Combustion Process Parameters in a Diesel Engine Powered by Second-Generation Biodiesel Compared to the First-Generation Biodiesel," Energies, MDPI, vol. 15(18), pages 1-21, September.
More about this item
Keywords
Kinetic model; Rubber tyre; Plastic; Wastes; Pyrolysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:58:y:2013:i:c:p:270-282. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.