IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i6p2544-2551.html
   My bibliography  Save this article

The waste-to-energy framework for integrated multi-waste utilization: Waste cooking oil, waste lubricating oil, and waste plastics

Author

Listed:
  • Singhabhandhu, Ampaitepin
  • Tezuka, Tetsuo

Abstract

Energy generation by wastes is considered one method of waste management that has the benefit of energy recovery. From the waste-to-energy point of view, waste cooking oil, waste lubricating oil, and waste plastics have been considered good candidates for feedstocks for energy conversion due to their high heating values. Compared to the independent management of these three wastes, the idea of co-processing them in integration is expected to gain more benefit. The economies of scale and the synergy of co-processing these wastes results in higher quality and higher yield of the end products. In this study, we use cost-benefit analysis to evaluate the integrated management scenario of collecting the three wastes and converting them to energy. We report the total heat of combustion of pyrolytic oil at the maximum and minimum conversion rates, and conduct a sensitivity analysis in which the parameters of an increase of the electricity cost for operating the process and increase of the feedstock transportation cost are tested. We evaluate the effects of economy of scale in the case of integrated waste management. We compare four cases of waste-to-energy conversion with the business as usual (BAU) scenario, and our results show that the integrated co-processing of waste cooking oil, waste lubricating oil, and waste plastics is the most profitable from the viewpoints of energy yield and economics.

Suggested Citation

  • Singhabhandhu, Ampaitepin & Tezuka, Tetsuo, 2010. "The waste-to-energy framework for integrated multi-waste utilization: Waste cooking oil, waste lubricating oil, and waste plastics," Energy, Elsevier, vol. 35(6), pages 2544-2551.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:6:p:2544-2551
    DOI: 10.1016/j.energy.2010.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210001180
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singhabhandhu, Ampaitepin & Tezuka, Tetsuo, 2010. "Prospective framework for collection and exploitation of waste cooking oil as feedstock for energy conversion," Energy, Elsevier, vol. 35(4), pages 1839-1847.
    2. Mani, M. & Nagarajan, G., 2009. "Influence of injection timing on performance, emission and combustion characteristics of a DI diesel engine running on waste plastic oil," Energy, Elsevier, vol. 34(10), pages 1617-1623.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanni De Feo & Aurelio Di Domenico & Carmen Ferrara & Salvatore Abate & Libero Sesti Osseo, 2020. "Evolution of Waste Cooking Oil Collection in an Area with Long-Standing Waste Management Problems," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
    2. Sharma, Bhasha & Goswami, Yagyadatta & Sharma, Shreya & Shekhar, Shashank, 2021. "Inherent roadmap of conversion of plastic waste into energy and its life cycle assessment: A frontrunner compendium," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Sri Devi Kumari, T. & Jebaraj, Adriel J.J. & Raj, T. Antony & Jeyakumar, D. & Kumar, T. Prem, 2016. "A kish graphitic lithium-insertion anode material obtained from non-biodegradable plastic waste," Energy, Elsevier, vol. 95(C), pages 483-493.
    4. Borugadda, Venu Babu & Goud, Vaibhav V., 2012. "Biodiesel production from renewable feedstocks: Status and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4763-4784.
    5. Dong, Huijuan & Ohnishi, Satoshi & Fujita, Tsuyoshi & Geng, Yong & Fujii, Minoru & Dong, Liang, 2014. "Achieving carbon emission reduction through industrial & urban symbiosis: A case of Kawasaki," Energy, Elsevier, vol. 64(C), pages 277-286.
    6. Alberto Mannu & Gina Vlahopoulou & Paolo Urgeghe & Monica Ferro & Alessandra Del Caro & Alessandro Taras & Sebastiano Garroni & Jonathan P. Rourke & Roberto Cabizza & Giacomo L. Petretto, 2019. "Variation of the Chemical Composition of Waste Cooking Oils upon Bentonite Filtration," Resources, MDPI, vol. 8(2), pages 1-15, June.
    7. Hidalgo, D. & Martín-Marroquín, J.M. & Corona, F., 2019. "A multi-waste management concept as a basis towards a circular economy model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 481-489.
    8. Botas, Juan A. & Moreno, Jovita & Espada, Juan J. & Serrano, David P. & Dufour, Javier, 2017. "Recycling of used lubricating oil: Evaluation of environmental and energy performance by LCA," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 315-323.
    9. Ortner, Maria E. & Müller, Wolfgang & Schneider, Irene & Bockreis, Anke, 2016. "Environmental assessment of three different utilization paths of waste cooking oil from households," Resources, Conservation & Recycling, Elsevier, vol. 106(C), pages 59-67.
    10. Bujak, Janusz Wojciech, 2015. "Thermal utilization (treatment) of plastic waste," Energy, Elsevier, vol. 90(P2), pages 1468-1477.
    11. Nina Bruun & Juho Lehmusto & Jarl Hemming & Fiseha Tesfaye & Leena Hupa, 2021. "Metal Rod Surfaces after Exposure to Used Cooking Oils," Sustainability, MDPI, vol. 14(1), pages 1-14, December.
    12. Tabasová, Andrea & Kropáč, Jiří & Kermes, Vít & Nemet, Andreja & Stehlík, Petr, 2012. "Waste-to-energy technologies: Impact on environment," Energy, Elsevier, vol. 44(1), pages 146-155.
    13. Tsai, Wen-Tien, 2011. "An analysis of used lubricant recycling, energy utilization and its environmental benefit in Taiwan," Energy, Elsevier, vol. 36(7), pages 4333-4339.
    14. Miranda, Miguel & Cabrita, I. & Pinto, Filomena & Gulyurtlu, I., 2013. "Mixtures of rubber tyre and plastic wastes pyrolysis: A kinetic study," Energy, Elsevier, vol. 58(C), pages 270-282.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Amar Kumar & Hansdah, Dulari & Panda, Achyut Kumar, 2021. "Thermal balancing and exergetic performance evaluation of a compression ignition engine fuelled with waste plastic pyrolytic oil and different fuel additives," Energy, Elsevier, vol. 229(C).
    2. Miranda, Miguel & Cabrita, I. & Pinto, Filomena & Gulyurtlu, I., 2013. "Mixtures of rubber tyre and plastic wastes pyrolysis: A kinetic study," Energy, Elsevier, vol. 58(C), pages 270-282.
    3. Jou, Chih-Ju G. & Wu, Chung-Rung & Lee, Chien-Li, 2010. "Reduction of energy cost and CO2 emission for the furnace using energy recovered from waste tail-gas," Energy, Elsevier, vol. 35(3), pages 1232-1236.
    4. Gurunathan Manikandan & P. Rajesh Kanna & Dawid Taler & Tomasz Sobota, 2023. "Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective," Energies, MDPI, vol. 16(4), pages 1-17, February.
    5. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    6. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    7. Wen-Tien Tsai, 2019. "Mandatory Recycling of Waste Cooking Oil from Residential and Commercial Sectors in Taiwan," Resources, MDPI, vol. 8(1), pages 1-11, February.
    8. Kannan, G.R. & Anand, R., 2011. "Experimental investigation on diesel engine with diestrol–water micro emulsions," Energy, Elsevier, vol. 36(3), pages 1680-1687.
    9. Gnanasekaran, Sakthivel & Saravanan, N. & Ilangkumaran, M., 2016. "Influence of injection timing on performance, emission and combustion characteristics of a DI diesel engine running on fish oil biodiesel," Energy, Elsevier, vol. 116(P1), pages 1218-1229.
    10. Dragiša Đorđić & Milan Milotić & Zoran Ćurguz & Slavko Đurić & Tihomir Đurić, 2021. "Experimental Testing of Combustion Parameters and Emissions of Waste Motor Oil and Its Diesel Mixtures," Energies, MDPI, vol. 14(18), pages 1-11, September.
    11. Paul, Abhishek & Panua, Raj Sekhar & Debroy, Durbadal & Bose, Probir Kumar, 2014. "Effect of compressed natural gas dual fuel operation with diesel and Pongamia pinnata methyl ester (PPME) as pilot fuels on performance and emission characteristics of a CI (compression ignition) engi," Energy, Elsevier, vol. 68(C), pages 495-509.
    12. Tan, Pi-qiang & Hu, Zhi-yuan & Lou, Di-ming & Li, Zhi-jun, 2012. "Exhaust emissions from a light-duty diesel engine with Jatropha biodiesel fuel," Energy, Elsevier, vol. 39(1), pages 356-362.
    13. Choi, Dongho & Jung, Sungyup & Lee, Sang Soo & Lin, Kun-Yi Andrew & Park, Young-Kwon & Kim, Hana & Tsang, Yiu Fai & Kwon, Eilhann E., 2021. "Leveraging carbon dioxide to control the H2/CO ratio in catalytic pyrolysis of fishing net waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    14. Channappagoudra, Manjunath & Ramesh, K. & Manavendra, G., 2020. "Effect of injection timing on modified direct injection diesel engine performance operated with dairy scum biodiesel and Bio-CNG," Renewable Energy, Elsevier, vol. 147(P1), pages 1019-1032.
    15. Varun, & Singh, Paramvir & Tiwari, Samaresh Kumar & Singh, Rituparn & Kumar, Naresh, 2017. "Modification in combustion chamber geometry of CI engines for suitability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1016-1033.
    16. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Rahimi, A. & Yusaf, Talal & Mamat, Rizalman & Sidik, N.A.C. & Azmi, W.H., 2017. "Effects of biodiesel fuel obtained from Salvia macrosiphon oil (ultrasonic-assisted) on performance and emissions of diesel engine," Energy, Elsevier, vol. 131(C), pages 289-296.
    17. Kalargaris, Ioannis & Tian, Guohong & Gu, Sai, 2017. "The utilisation of oils produced from plastic waste at different pyrolysis temperatures in a DI diesel engine," Energy, Elsevier, vol. 131(C), pages 179-185.
    18. T. M. Yunus Khan & Irfan Anjum Badruddin & Manzoore Elahi M. Soudagar & Sanjeev V. Khandal & Sarfaraz Kamangar & Imran Mokashi & M. A. Mujtaba & Nazia Hossain, 2021. "Biodiesel Production Using Modified Direct Transesterification by Sequential Use of Acid-Base Catalysis and Performance Evaluation of Diesel Engine Using Various Blends," Sustainability, MDPI, vol. 13(17), pages 1-17, August.
    19. Gad, M.S. & Panchal, Hitesh & Ağbulut, Ümit, 2022. "Waste to Energy: An experimental comparison of burning the waste-derived bio-oils produced by transesterification and pyrolysis methods," Energy, Elsevier, vol. 242(C).
    20. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N. & Hiremath, S.S., 2017. "Paradigm shift from mechanical direct injection diesel engines to advanced injection strategies of diesel homogeneous charge compression ignition (HCCI) engines- A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 369-384.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:6:p:2544-2551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.