IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip2p1468-1477.html
   My bibliography  Save this article

Thermal utilization (treatment) of plastic waste

Author

Listed:
  • Bujak, Janusz Wojciech

Abstract

This paper presents the results of a pilot study of a thermal utilization installation for incinerating plastic waste. The research was conducted on an industrial scale in a plant that manufactures plastic tape (used for warning, packing and masking purposes, among others). The system was considered in terms of three aspects: energy, environmental and economic. Due to the very high LCV (lower calorific value) of the waste, an innovative rotary combustion chamber (rotary kiln) was employed. The experimental installation was analysed in terms of the temperature distribution in the rotary kiln, secondary combustion (afterburner) chamber and heat recovery system. The thermal efficiency of the tested installation was determined. The emissions into the atmosphere were measured and compared with the applicable emission standards. Due to the nature of the waste, particular attention was paid to emission analysis of carbon oxide and volatile organic compounds. In terms of the economic aspect, fundamental economic indicators were found for the tested system to determine the profitability of its construction.

Suggested Citation

  • Bujak, Janusz Wojciech, 2015. "Thermal utilization (treatment) of plastic waste," Energy, Elsevier, vol. 90(P2), pages 1468-1477.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p2:p:1468-1477
    DOI: 10.1016/j.energy.2015.06.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215008622
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.06.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Panda, Achyut K. & Singh, R.K. & Mishra, D.K., 2010. "Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products--A world prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 233-248, January.
    2. Li, A.M & Li, X.D & Li, S.Q & Ren, Y & Shang, N & Chi, Y & Yan, J.H & Cen, K.F, 1999. "Experimental studies on municipal solid waste pyrolysis in a laboratory-scale rotary kiln," Energy, Elsevier, vol. 24(3), pages 209-218.
    3. Mani, M. & Nagarajan, G. & Sampath, S., 2011. "Characterisation and effect of using waste plastic oil and diesel fuel blends in compression ignition engine," Energy, Elsevier, vol. 36(1), pages 212-219.
    4. Wallman, P.H & Thorsness, C.B & Winter, J.D, 1998. "Hydrogen production from wastes," Energy, Elsevier, vol. 23(4), pages 271-278.
    5. Mori, Yasuhumi & Kikegawa, Yukihiro & Uchida, Hiroyuki, 2007. "A model for detailed evaluation of fossil-energy saving by utilizing unused but possible energy-sources on a city scale," Applied Energy, Elsevier, vol. 84(9), pages 921-935, September.
    6. Lee, Jung Soo & Kim, Sang Done, 1996. "Gasification kinetics of waste tire-char with CO2 in a thermobalance reactor," Energy, Elsevier, vol. 21(5), pages 343-352.
    7. Singhabhandhu, Ampaitepin & Tezuka, Tetsuo, 2010. "The waste-to-energy framework for integrated multi-waste utilization: Waste cooking oil, waste lubricating oil, and waste plastics," Energy, Elsevier, vol. 35(6), pages 2544-2551.
    8. Bujak, J., 2009. "Experimental study of the energy efficiency of an incinerator for medical waste," Applied Energy, Elsevier, vol. 86(11), pages 2386-2393, November.
    9. Chiarioni, A. & Reverberi, A.P. & Fabiano, B. & Dovì, V.G., 2006. "An improved model of an ASR pyrolysis reactor for energy recovery," Energy, Elsevier, vol. 31(13), pages 2460-2468.
    10. Mani, M. & Nagarajan, G., 2009. "Influence of injection timing on performance, emission and combustion characteristics of a DI diesel engine running on waste plastic oil," Energy, Elsevier, vol. 34(10), pages 1617-1623.
    11. Miranda, Miguel & Cabrita, I. & Pinto, Filomena & Gulyurtlu, I., 2013. "Mixtures of rubber tyre and plastic wastes pyrolysis: A kinetic study," Energy, Elsevier, vol. 58(C), pages 270-282.
    12. Holmgren, Kristina, 2006. "Role of a district-heating network as a user of waste-heat supply from various sources - the case of Göteborg," Applied Energy, Elsevier, vol. 83(12), pages 1351-1367, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hannah Jones & Florence Saffar & Vasileios Koutsos & Dipa Ray, 2021. "Polyolefins and Polyethylene Terephthalate Package Wastes: Recycling and Use in Composites," Energies, MDPI, vol. 14(21), pages 1-43, November.
    2. Florkowski, Wojciech J., 2020. "Plastic Waste And Its Removal By Licensed Horticultural Firms In Georgia, Usa," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2020(4).
    3. Farihahusnah Hussin & Mohamed Kheireddine Aroua & Mohd Azlan Kassim & Umi Fazara Md. Ali, 2021. "Transforming Plastic Waste into Porous Carbon for Capturing Carbon Dioxide: A Review," Energies, MDPI, vol. 14(24), pages 1-22, December.
    4. Vlasopoulos, Antonis & Malinauskaite, Jurgita & Żabnieńska-Góra, Alina & Jouhara, Hussam, 2023. "Life cycle assessment of plastic waste and energy recovery," Energy, Elsevier, vol. 277(C).
    5. Valdas Rudelis & Tadas Dambrauskas & Agne Grineviciene & Kestutis Baltakys, 2019. "The Prospective Approach for the Reduction of Fluoride Ions Mobility in Industrial Waste by Creating Products of Commercial Value," Sustainability, MDPI, vol. 11(3), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bujak, Janusz Wojciech, 2015. "Production of waste energy and heat in hospital facilities," Energy, Elsevier, vol. 91(C), pages 350-362.
    2. Bujak, Janusz Wojciech, 2015. "Heat recovery from thermal treatment of medical waste," Energy, Elsevier, vol. 90(P2), pages 1721-1732.
    3. Miranda, Miguel & Cabrita, I. & Pinto, Filomena & Gulyurtlu, I., 2013. "Mixtures of rubber tyre and plastic wastes pyrolysis: A kinetic study," Energy, Elsevier, vol. 58(C), pages 270-282.
    4. Sri Devi Kumari, T. & Jebaraj, Adriel J.J. & Raj, T. Antony & Jeyakumar, D. & Kumar, T. Prem, 2016. "A kish graphitic lithium-insertion anode material obtained from non-biodegradable plastic waste," Energy, Elsevier, vol. 95(C), pages 483-493.
    5. Das, Amar Kumar & Sahu, Santosh Kumar & Panda, Achyut Kumar, 2022. "Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Murugan, S. & Gu, Sai, 2015. "Research and development activities in pyrolysis – Contributions from Indian scientific community – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 282-295.
    7. Das, Amar Kumar & Hansdah, Dulari & Panda, Achyut Kumar, 2021. "Thermal balancing and exergetic performance evaluation of a compression ignition engine fuelled with waste plastic pyrolytic oil and different fuel additives," Energy, Elsevier, vol. 229(C).
    8. Kunwar, Bidhya & Cheng, H.N. & Chandrashekaran, Sriram R & Sharma, Brajendra K, 2016. "Plastics to fuel: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 421-428.
    9. Kalargaris, Ioannis & Tian, Guohong & Gu, Sai, 2017. "The utilisation of oils produced from plastic waste at different pyrolysis temperatures in a DI diesel engine," Energy, Elsevier, vol. 131(C), pages 179-185.
    10. Heena Panchasara & Nanjappa Ashwath, 2021. "Effects of Pyrolysis Bio-Oils on Fuel Atomisation—A Review," Energies, MDPI, vol. 14(4), pages 1-22, February.
    11. Panneerselvam, N. & Murugesan, A. & Vijayakumar, C. & Kumaravel, A. & Subramaniam, D. & Avinash, A., 2015. "Effects of injection timing on bio-diesel fuelled engine characteristics—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 17-31.
    12. Othman, Mohd Fahmi & Adam, Abdullah & Najafi, G. & Mamat, Rizalman, 2017. "Green fuel as alternative fuel for diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 694-709.
    13. Bujak, J., 2009. "Experimental study of the energy efficiency of an incinerator for medical waste," Applied Energy, Elsevier, vol. 86(11), pages 2386-2393, November.
    14. Pieper, Henrik & Ommen, Torben & Elmegaard, Brian & Brix Markussen, Wiebke, 2019. "Assessment of a combination of three heat sources for heat pumps to supply district heating," Energy, Elsevier, vol. 176(C), pages 156-170.
    15. Guelpa, Elisa & Verda, Vittorio, 2019. "Compact physical model for simulation of thermal networks," Energy, Elsevier, vol. 175(C), pages 998-1008.
    16. Riaz Ahmad & Gengyuan Liu & Remo Santagata & Marco Casazza & Jingyan Xue & Kifayatullah Khan & Javed Nawab & Sergio Ulgiati & Massimiliano Lega, 2019. "LCA of Hospital Solid Waste Treatment Alternatives in a Developing Country: The Case of District Swat, Pakistan," Sustainability, MDPI, vol. 11(13), pages 1-20, June.
    17. Tsai, Wen-Tien, 2011. "An analysis of used lubricant recycling, energy utilization and its environmental benefit in Taiwan," Energy, Elsevier, vol. 36(7), pages 4333-4339.
    18. Jou, Chih-Ju G. & Wu, Chung-Rung & Lee, Chien-Li, 2010. "Reduction of energy cost and CO2 emission for the furnace using energy recovered from waste tail-gas," Energy, Elsevier, vol. 35(3), pages 1232-1236.
    19. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    20. Park, Ki-Bum & Choi, Min-Jun & Chae, Da-Yeong & Jung, Jaeheum & Kim, Joo-Sik, 2022. "Separate two-step and continuous two-stage pyrolysis of a waste plastic mixture to produce a chlorine-depleted oil," Energy, Elsevier, vol. 244(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p2:p:1468-1477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.