IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v95y2016icp483-493.html
   My bibliography  Save this article

A kish graphitic lithium-insertion anode material obtained from non-biodegradable plastic waste

Author

Listed:
  • Sri Devi Kumari, T.
  • Jebaraj, Adriel J.J.
  • Raj, T. Antony
  • Jeyakumar, D.
  • Kumar, T. Prem

Abstract

Graphitic carbon continues to dominate as the choice anode material in lithium-ion batteries despite its theoretical specific capacity of 372 mAhg−1. Tailored forms of graphite with higher practical capacities should, therefore, be of interest to the industry. This paper reports the production of a kish graphitic anode material from polyvinyl chloride by simultaneous carbonization of the polymer and dissolution of the resulting carbon in an iron melt to produce a supersaturated solution of carbon in iron, and subsequent precipitation of the carbon as graphite upon cooling. Our study presents a process for converting non-biodegradable plastic wastes that litter our surroundings into a technologically useful product. The new material exhibits a first-cycle reversible capacity of 444 mAhg−1 and sustains at least 200 cycles at C/10 rate before its capacity drops below 372 mAhg−1.

Suggested Citation

  • Sri Devi Kumari, T. & Jebaraj, Adriel J.J. & Raj, T. Antony & Jeyakumar, D. & Kumar, T. Prem, 2016. "A kish graphitic lithium-insertion anode material obtained from non-biodegradable plastic waste," Energy, Elsevier, vol. 95(C), pages 483-493.
  • Handle: RePEc:eee:energy:v:95:y:2016:i:c:p:483-493
    DOI: 10.1016/j.energy.2015.11.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215016321
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.11.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Panda, Achyut K. & Singh, R.K. & Mishra, D.K., 2010. "Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products--A world prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 233-248, January.
    2. Arena, Umberto & Di Gregorio, Fabrizio, 2014. "Energy generation by air gasification of two industrial plastic wastes in a pilot scale fluidized bed reactor," Energy, Elsevier, vol. 68(C), pages 735-743.
    3. Li, A.M & Li, X.D & Li, S.Q & Ren, Y & Shang, N & Chi, Y & Yan, J.H & Cen, K.F, 1999. "Experimental studies on municipal solid waste pyrolysis in a laboratory-scale rotary kiln," Energy, Elsevier, vol. 24(3), pages 209-218.
    4. Wallman, P.H & Thorsness, C.B & Winter, J.D, 1998. "Hydrogen production from wastes," Energy, Elsevier, vol. 23(4), pages 271-278.
    5. Chelsea M. Rochman & Mark Anthony Browne & Benjamin S. Halpern & Brian T. Hentschel & Eunha Hoh & Hrissi K. Karapanagioti & Lorena M. Rios-Mendoza & Hideshige Takada & Swee Teh & Richard C. Thompson, 2013. "Classify plastic waste as hazardous," Nature, Nature, vol. 494(7436), pages 169-171, February.
    6. Singhabhandhu, Ampaitepin & Tezuka, Tetsuo, 2010. "The waste-to-energy framework for integrated multi-waste utilization: Waste cooking oil, waste lubricating oil, and waste plastics," Energy, Elsevier, vol. 35(6), pages 2544-2551.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Park, Seung-Keun & Seong, Chae-Yong & Yoo, Suyeon & Piao, Yuanzhe, 2016. "Porous Mn3O4 nanorod/reduced graphene oxide hybrid paper as a flexible and binder-free anode material for lithium ion battery," Energy, Elsevier, vol. 99(C), pages 266-273.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bujak, Janusz Wojciech, 2015. "Thermal utilization (treatment) of plastic waste," Energy, Elsevier, vol. 90(P2), pages 1468-1477.
    2. Miranda, Miguel & Cabrita, I. & Pinto, Filomena & Gulyurtlu, I., 2013. "Mixtures of rubber tyre and plastic wastes pyrolysis: A kinetic study," Energy, Elsevier, vol. 58(C), pages 270-282.
    3. Bujak, Janusz Wojciech, 2015. "Production of waste energy and heat in hospital facilities," Energy, Elsevier, vol. 91(C), pages 350-362.
    4. Bujak, Janusz Wojciech, 2015. "Heat recovery from thermal treatment of medical waste," Energy, Elsevier, vol. 90(P2), pages 1721-1732.
    5. Lopez, Gartzen & Artetxe, Maite & Amutio, Maider & Bilbao, Javier & Olazar, Martin, 2017. "Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 346-368.
    6. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. Bassey, Uduak & Sarquah, Khadija & Hartmann, Michael & Tom, Abasi-ofon & Beck, Gesa & Antwi, Edward & Narra, Satyanarayana & Nelles, Michael, 2023. "Thermal treatment options for single-use, multilayered and composite waste plastics in Africa," Energy, Elsevier, vol. 270(C).
    8. Riaz Ahmad & Gengyuan Liu & Remo Santagata & Marco Casazza & Jingyan Xue & Kifayatullah Khan & Javed Nawab & Sergio Ulgiati & Massimiliano Lega, 2019. "LCA of Hospital Solid Waste Treatment Alternatives in a Developing Country: The Case of District Swat, Pakistan," Sustainability, MDPI, vol. 11(13), pages 1-20, June.
    9. Cho, Min-Hwan & Choi, Young-Kon & Kim, Joo-Sik, 2015. "Air gasification of PVC (polyvinyl chloride)-containing plastic waste in a two-stage gasifier using Ca-based additives and Ni-loaded activated carbon for the production of clean and hydrogen-rich prod," Energy, Elsevier, vol. 87(C), pages 586-593.
    10. Tsai, Wen-Tien, 2011. "An analysis of used lubricant recycling, energy utilization and its environmental benefit in Taiwan," Energy, Elsevier, vol. 36(7), pages 4333-4339.
    11. Park, Ki-Bum & Choi, Min-Jun & Chae, Da-Yeong & Jung, Jaeheum & Kim, Joo-Sik, 2022. "Separate two-step and continuous two-stage pyrolysis of a waste plastic mixture to produce a chlorine-depleted oil," Energy, Elsevier, vol. 244(PA).
    12. Muise, Isaac & Adams, Michelle & Côté, Ray & Price, G.W., 2016. "Attitudes to the recovery and recycling of agricultural plastics waste: A case study of Nova Scotia, Canada," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 137-145.
    13. Das, Amar Kumar & Sahu, Santosh Kumar & Panda, Achyut Kumar, 2022. "Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    14. Vlasopoulos, Antonis & Malinauskaite, Jurgita & Żabnieńska-Góra, Alina & Jouhara, Hussam, 2023. "Life cycle assessment of plastic waste and energy recovery," Energy, Elsevier, vol. 277(C).
    15. Andrea Porcu & Stefano Sollai & Davide Marotto & Mauro Mureddu & Francesca Ferrara & Alberto Pettinau, 2019. "Techno-Economic Analysis of a Small-Scale Biomass-to-Energy BFB Gasification-Based System," Energies, MDPI, vol. 12(3), pages 1-17, February.
    16. Giovanni De Feo & Aurelio Di Domenico & Carmen Ferrara & Salvatore Abate & Libero Sesti Osseo, 2020. "Evolution of Waste Cooking Oil Collection in an Area with Long-Standing Waste Management Problems," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
    17. Parrillo, Francesco & Ardolino, Filomena & Calì, Gabriele & Marotto, Davide & Pettinau, Alberto & Arena, Umberto, 2021. "Fluidized bed gasification of eucalyptus chips: Axial profiles of syngas composition in a pilot scale reactor," Energy, Elsevier, vol. 219(C).
    18. Alberto Mannu & Gina Vlahopoulou & Paolo Urgeghe & Monica Ferro & Alessandra Del Caro & Alessandro Taras & Sebastiano Garroni & Jonathan P. Rourke & Roberto Cabizza & Giacomo L. Petretto, 2019. "Variation of the Chemical Composition of Waste Cooking Oils upon Bentonite Filtration," Resources, MDPI, vol. 8(2), pages 1-15, June.
    19. Kunwar, Bidhya & Cheng, H.N. & Chandrashekaran, Sriram R & Sharma, Brajendra K, 2016. "Plastics to fuel: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 421-428.
    20. Ardolino, Filomena & Lodato, Concetta & Astrup, Thomas F. & Arena, Umberto, 2018. "Energy recovery from plastic and biomass waste by means of fluidized bed gasification: A life cycle inventory model," Energy, Elsevier, vol. 165(PB), pages 299-314.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:95:y:2016:i:c:p:483-493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.