IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v55y2013icp838-845.html
   My bibliography  Save this article

A simplified model of energy pile for ground-source heat pump systems

Author

Listed:
  • Lee, C.K.
  • Lam, H.N.

Abstract

A simplified three-dimensional finite difference model for a single (cylindrical energy pile) CEP was developed. The present model was first verified with an analytical solution based on the special case that the material inside and outside the CEP had the same thermal properties. For the case of different thermal properties in the various ground regions, the calculated thermal resistance of the CEP (Rep) under a constant applied load was compared with the one determined with the assumption of a steady state inside the CEP. In both situations, the differences were found to be small. The effect of the thermal properties of various regions on the performance of the CEP was investigated. It was found the material underneath the CEP had negligible impact on the CEP performance. The soil material outside the CEP had stronger effect on the fluid temperature leaving the CEP (Tf, out) while Rep depended more on the material inside the CEP. Meanwhile, Rep reached a higher value at the beginning of each load cycle. The influence became significant for intermittent loading of the CEP. Furthermore, it was found that for optimal design involving a single pipe circuit inside the CEP, all pipes should be equally-spaced and connected consecutively.

Suggested Citation

  • Lee, C.K. & Lam, H.N., 2013. "A simplified model of energy pile for ground-source heat pump systems," Energy, Elsevier, vol. 55(C), pages 838-845.
  • Handle: RePEc:eee:energy:v:55:y:2013:i:c:p:838-845
    DOI: 10.1016/j.energy.2013.03.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213002740
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.03.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, C.K., 2010. "Dynamic performance of ground-source heat pumps fitted with frequency inverters for part-load control," Applied Energy, Elsevier, vol. 87(11), pages 3507-3513, November.
    2. Cui, Ping & Li, Xin & Man, Yi & Fang, Zhaohong, 2011. "Heat transfer analysis of pile geothermal heat exchangers with spiral coils," Applied Energy, Elsevier, vol. 88(11), pages 4113-4119.
    3. Lee, C.K. & Lam, H.N., 2008. "Computer simulation of borehole ground heat exchangers for geothermal heat pump systems," Renewable Energy, Elsevier, vol. 33(6), pages 1286-1296.
    4. Li, Min & Lai, Alvin C.K., 2012. "New temperature response functions (G functions) for pile and borehole ground heat exchangers based on composite-medium line-source theory," Energy, Elsevier, vol. 38(1), pages 255-263.
    5. Li, Min & Lai, Alvin C.K., 2012. "Heat-source solutions to heat conduction in anisotropic media with application to pile and borehole ground heat exchangers," Applied Energy, Elsevier, vol. 96(C), pages 451-458.
    6. Gao, Jun & Zhang, Xu & Liu, Jun & Li, Kuishan & Yang, Jie, 2008. "Numerical and experimental assessment of thermal performance of vertical energy piles: An application," Applied Energy, Elsevier, vol. 85(10), pages 901-910, October.
    7. Lee, C.K. & Lam, H.N., 2012. "A modified multi-ground-layer model for borehole ground heat exchangers with an inhomogeneous groundwater flow," Energy, Elsevier, vol. 47(1), pages 378-387.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borge-Diez, David & Colmenar-Santos, Antonio & Pérez-Molina, Clara & López-Rey, África, 2015. "Geothermal source heat pumps under energy services companies finance scheme to increase energy efficiency and production in stockbreeding facilities," Energy, Elsevier, vol. 88(C), pages 821-836.
    2. Cherati, Davood Yazdani & Ghasemi-Fare, Omid, 2021. "Practical approaches for implementation of energy piles in Iran based on the lessons learned from the developed countries experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    3. Naili, Nabiha & Hazami, Majdi & Attar, Issam & Farhat, Abdelhamid, 2013. "In-field performance analysis of ground source cooling system with horizontal ground heat exchanger in Tunisia," Energy, Elsevier, vol. 61(C), pages 319-331.
    4. Akbari Garakani, Amir & Mokhtari Jozani, Sahar & Hashemi Tari, Pooyan & Heidari, Bahareh, 2022. "Effects of heat exchange fluid characteristics and pipe configuration on the ultimate bearing capacity of energy piles," Energy, Elsevier, vol. 248(C).
    5. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    6. Fadejev, Jevgeni & Simson, Raimo & Kurnitski, Jarek & Haghighat, Fariborz, 2017. "A review on energy piles design, sizing and modelling," Energy, Elsevier, vol. 122(C), pages 390-407.
    7. Nam, Yujin & Chae, Ho-Byung, 2014. "Numerical simulation for the optimum design of ground source heat pump system using building foundation as horizontal heat exchanger," Energy, Elsevier, vol. 73(C), pages 933-942.
    8. Faizal, Mohammed & Bouazza, Abdelmalek & McCartney, John S., 2022. "Thermal resistance analysis of an energy pile and adjacent soil using radial temperature gradients," Renewable Energy, Elsevier, vol. 190(C), pages 1066-1077.
    9. Maragna, Charles & Loveridge, Fleur, 2019. "A resistive-capacitive model of pile heat exchangers with an application to thermal response tests interpretation," Renewable Energy, Elsevier, vol. 138(C), pages 891-910.
    10. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    11. Andrea Ferrantelli & Jevgeni Fadejev & Jarek Kurnitski, 2019. "Energy Pile Field Simulation in Large Buildings: Validation of Surface Boundary Assumptions," Energies, MDPI, vol. 12(5), pages 1-20, February.
    12. Franco, A. & Moffat, R. & Toledo, M. & Herrera, P., 2016. "Numerical sensitivity analysis of thermal response tests (TRT) in energy piles," Renewable Energy, Elsevier, vol. 86(C), pages 985-992.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    2. Zarrella, Angelo & Capozza, Antonio & De Carli, Michele, 2013. "Analysis of short helical and double U-tube borehole heat exchangers: A simulation-based comparison," Applied Energy, Elsevier, vol. 112(C), pages 358-370.
    3. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
    4. Zhang, Wenke & Yang, Hongxing & Lu, Lin & Fang, Zhaohong, 2013. "The analysis on solid cylindrical heat source model of foundation pile ground heat exchangers with groundwater flow," Energy, Elsevier, vol. 55(C), pages 417-425.
    5. Go, Gyu-Hyun & Lee, Seung-Rae & Yoon, Seok & Kang, Han-byul, 2014. "Design of spiral coil PHC energy pile considering effective borehole thermal resistance and groundwater advection effects," Applied Energy, Elsevier, vol. 125(C), pages 165-178.
    6. Li, Min & Li, Ping & Chan, Vincent & Lai, Alvin C.K., 2014. "Full-scale temperature response function (G-function) for heat transfer by borehole ground heat exchangers (GHEs) from sub-hour to decades," Applied Energy, Elsevier, vol. 136(C), pages 197-205.
    7. Zarrella, Angelo & De Carli, Michele, 2013. "Heat transfer analysis of short helical borehole heat exchangers," Applied Energy, Elsevier, vol. 102(C), pages 1477-1491.
    8. Yoon, Seok & Lee, Seung-Rae & Kim, Min-Jun & Kim, Woo-Jin & Kim, Geon-Young & Kim, Kyungsu, 2016. "Evaluation of stainless steel pipe performance as a ground heat exchanger in ground-source heat-pump system," Energy, Elsevier, vol. 113(C), pages 328-337.
    9. Li, Chao & Guan, Yanling & Wang, Xing & Li, Gaopeng & Zhou, Cong & Xun, Yingjiu, 2018. "Experimental and numerical studies on heat transfer characteristics of vertical deep-buried U-bend pipe to supply heat in buildings with geothermal energy," Energy, Elsevier, vol. 142(C), pages 689-701.
    10. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    11. Li, Min & Lai, Alvin C.K., 2013. "Analytical model for short-time responses of ground heat exchangers with U-shaped tubes: Model development and validation," Applied Energy, Elsevier, vol. 104(C), pages 510-516.
    12. Zhou, Yang & Zheng, Zhi-xiang & Zhao, Guang-si, 2022. "Analytical models for heat transfer around a single ground heat exchanger in the presence of both horizontal and vertical groundwater flow considering a convective boundary condition," Energy, Elsevier, vol. 245(C).
    13. Cui, Ping & Jia, Linrui & Zhou, Xinlei & Yang, Wenxiao & Zhang, Wenke, 2020. "Heat transfer analysis of energy piles with parallel U-Tubes," Renewable Energy, Elsevier, vol. 161(C), pages 1046-1058.
    14. Paul Christodoulides & Ana Vieira & Stanislav Lenart & João Maranha & Gregor Vidmar & Rumen Popov & Aleksandar Georgiev & Lazaros Aresti & Georgios Florides, 2020. "Reviewing the Modeling Aspects and Practices of Shallow Geothermal Energy Systems," Energies, MDPI, vol. 13(16), pages 1-45, August.
    15. Cherati, Davood Yazdani & Ghasemi-Fare, Omid, 2021. "Practical approaches for implementation of energy piles in Iran based on the lessons learned from the developed countries experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    16. Zhang, Donghai & Gao, Penghui & Zhou, Yang & Wang, Yijiang & Zhou, Guoqing, 2020. "An experimental and numerical investigation on temperature profile of underground soil in the process of heat storage," Renewable Energy, Elsevier, vol. 148(C), pages 1-21.
    17. Park, Sangwoo & Lee, Dongseop & Lee, Seokjae & Chauchois, Alexis & Choi, Hangseok, 2017. "Experimental and numerical analysis on thermal performance of large-diameter cast-in-place energy pile constructed in soft ground," Energy, Elsevier, vol. 118(C), pages 297-311.
    18. Zhou, Guoqing & Zhou, Yang & Zhang, Donghai, 2016. "Analytical solutions for two pile foundation heat exchanger models in a double-layered ground," Energy, Elsevier, vol. 112(C), pages 655-668.
    19. Lee, C.K., 2011. "Effects of multiple ground layers on thermal response test analysis and ground-source heat pump simulation," Applied Energy, Elsevier, vol. 88(12), pages 4405-4410.
    20. Li, Min & Lai, Alvin C.K., 2012. "Heat-source solutions to heat conduction in anisotropic media with application to pile and borehole ground heat exchangers," Applied Energy, Elsevier, vol. 96(C), pages 451-458.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:55:y:2013:i:c:p:838-845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.