IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v85y2008i10p901-910.html
   My bibliography  Save this article

Numerical and experimental assessment of thermal performance of vertical energy piles: An application

Author

Listed:
  • Gao, Jun
  • Zhang, Xu
  • Liu, Jun
  • Li, Kuishan
  • Yang, Jie

Abstract

A district space heating and cooling system using geothermal energy from bearing piles was designed in Shanghai and will be installed in two years before 2010. This paper describes the pile-foundation heat exchangers applied in an energy pile system for an actual architectural complex in Shanghai, 30% of whose cooling/heating load was designed to be provided by a ground-source heat pump (GSHP) system using the energy piles. In situ performance tests of heat transfer are carried out to figure out the most efficient type of energy pile and to specify the design of energy pile system. Numerical investigation is also performed to confirm the test results and to demonstrate the medium temperature variations along the pipes. The averaged heat resistance and heat injection rate of different types of energy piles are calculated from the test and numerical results. The effect of pile type, medium flow rate and inlet temperature on thermal performance is separately discussed. From the viewpoint of energy efficiency and adjustability, the W-shaped underground heat exchanger with moderate medium flow rate is finally adopted for the energy pile system.

Suggested Citation

  • Gao, Jun & Zhang, Xu & Liu, Jun & Li, Kuishan & Yang, Jie, 2008. "Numerical and experimental assessment of thermal performance of vertical energy piles: An application," Applied Energy, Elsevier, vol. 85(10), pages 901-910, October.
  • Handle: RePEc:eee:appene:v:85:y:2008:i:10:p:901-910
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00034-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacovides, C.P. & Mihalakakou, G., 1995. "An underground pipe system as an energy source for cooling/heating purposes," Renewable Energy, Elsevier, vol. 6(8), pages 893-900.
    2. Fan, Rui & Jiang, Yiqiang & Yao, Yang & Shiming, Deng & Ma, Zuiliang, 2007. "A study on the performance of a geothermal heat exchanger under coupled heat conduction and groundwater advection," Energy, Elsevier, vol. 32(11), pages 2199-2209.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aneta Sapińska-Sliwa & Marc A. Rosen & Andrzej Gonet & Joanna Kowalczyk & Tomasz Sliwa, 2019. "A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers," Energies, MDPI, vol. 12(6), pages 1-22, March.
    2. Stylianou, Iosifina Iosif & Florides, Georgios & Tassou, Savvas & Tsiolakis, Efthymios & Christodoulides, Paul, 2017. "Methodology for estimating the ground heat absorption rate of Ground Heat Exchangers," Energy, Elsevier, vol. 127(C), pages 258-270.
    3. Wenke Zhang & Hongxing Yang & Lin Lu & Zhaohong Fang, 2017. "Investigation on the heat transfer of energy piles with two-dimensional groundwater flow," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(1), pages 43-50.
    4. Xiao-Hui Sun & Hongbin Yan & Mehrdad Massoudi & Zhi-Hua Chen & Wei-Tao Wu, 2018. "Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger," Energies, MDPI, vol. 11(4), pages 1-18, April.
    5. Zhou, Zhihua & Zhang, Zhiming & Chen, Guanyi & Zuo, Jian & Xu, Pan & Meng, Chong & Yu, Zhun, 2016. "Feasibility of ground coupled heat pumps in office buildings: A China study," Applied Energy, Elsevier, vol. 162(C), pages 266-277.
    6. Qi, Zishu & Gao, Qing & Liu, Yan & Yan, Y.Y. & Spitler, Jeffrey D., 2014. "Status and development of hybrid energy systems from hybrid ground source heat pump in China and other countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 37-51.
    7. Zanchini, Enzo & Lazzari, Stefano & Priarone, Antonella, 2012. "Long-term performance of large borehole heat exchanger fields with unbalanced seasonal loads and groundwater flow," Energy, Elsevier, vol. 38(1), pages 66-77.
    8. Matteo Antelmi & Francesco Turrin & Andrea Zille & Roberto Fedrizzi, 2023. "A New Type in TRNSYS 18 for Simulation of Borehole Heat Exchangers Affected by Different Groundwater Flow Velocities," Energies, MDPI, vol. 16(3), pages 1-23, January.
    9. Jae Ho Lee & In Tak Hyun & Yeo Beom Yoon & Kwang Ho Lee & Yu Jin Nam, 2015. "Energetic and Economic Assessment of Pipe Network Effects on Unused Energy Source System Performance in Large-Scale Horticulture Facilities," Energies, MDPI, vol. 8(5), pages 1-23, April.
    10. Njau, Ernest C., 1997. "A new analytical model for temperature predictions," Renewable Energy, Elsevier, vol. 11(1), pages 61-68.
    11. Rachana Vidhi, 2018. "A Review of Underground Soil and Night Sky as Passive Heat Sink: Design Configurations and Models," Energies, MDPI, vol. 11(11), pages 1-24, October.
    12. Shuiping Zhu & Jianjun Sun & Kaiyang Zhong & Haisheng Chen, 2021. "Numerical Investigation of the Influence of Precooling on the Thermal Performance of a Borehole Heat Exchanger," Energies, MDPI, vol. 15(1), pages 1-15, December.
    13. Peretti, Clara & Zarrella, Angelo & De Carli, Michele & Zecchin, Roberto, 2013. "The design and environmental evaluation of earth-to-air heat exchangers (EAHE). A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 107-116.
    14. Lazzari, Stefano & Priarone, Antonella & Zanchini, Enzo, 2010. "Long-term performance of BHE (borehole heat exchanger) fields with negligible groundwater movement," Energy, Elsevier, vol. 35(12), pages 4966-4974.
    15. Sławiński, Daniel, 2020. "Un-stationary thermal analysis of the vertical ground heat exchanger within unsaturated soils," Renewable Energy, Elsevier, vol. 151(C), pages 805-815.
    16. Hu, Jinzhong, 2017. "An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow," Applied Energy, Elsevier, vol. 202(C), pages 537-549.
    17. Davis, Adelina P. & Michaelides, Efstathios E., 2009. "Geothermal power production from abandoned oil wells," Energy, Elsevier, vol. 34(7), pages 866-872.
    18. Choi, Jung Chan & Park, Joonsang & Lee, Seung Rae, 2013. "Numerical evaluation of the effects of groundwater flow on borehole heat exchanger arrays," Renewable Energy, Elsevier, vol. 52(C), pages 230-240.
    19. Fan, Rui & Jiang, Yiqiang & Yao, Yang & Ma, Zuiliang, 2008. "Theoretical study on the performance of an integrated ground-source heat pump system in a whole year," Energy, Elsevier, vol. 33(11), pages 1671-1679.
    20. Shibin Geng & Yong Li & Xu Han & Huiliang Lian & Hua Zhang, 2016. "Evaluation of Thermal Anomalies in Multi-Boreholes Field Considering the Effects of Groundwater Flow," Sustainability, MDPI, vol. 8(6), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:85:y:2008:i:10:p:901-910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.